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ABSTRACT 

A large number of the Chapman and Cowling collision integrals 

have been calculated for gases obeying a modified Buckingham potential, 

e    r (.    «('-r/r"0     / rm\<>- 
^•M^U"       -(7) The results are tabulated over a large 

temperature range,    kT/e    from   0   to   200,  and for four values of the 

parameter   <V    ,   12,   13,   14,  and 15.    The treatment was entirely classical, 

and no corrections for quantum effects were made.    The results should be 

applicable to most simple,  non-polar gases,   and may be used to obtain informa- 

tion about intermolecular forces from the observed temperature dependence of 

gaseous transport properties. 

The second approximation to the thermal  diffusion ratio and the 

third approximation to the coefficient of ordinary diffusion have been derived 

according to the method of Chapman and Cowling. 

Evaluation of the potential parameters for specific substances and 

applications of the results will be published later. 

*   This work was supported in part by Contract N7onr-28511 with the Office 
of Naval Research. 

National Research Fellow,   1952-1953. 
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I.    INTRODUCTION 

The influence of intermolecular forces on the transport properties 

of gases is well known,   and information concerning intermolecular forces may 

be obtained from the temperature variation of gaseous transport coefficients 

by means of the theory developed by Enskog*  ' and by Chapman     .     Such 

information is useful in correlating other properties of gases,  as well as 

properties of the liquid and solid states. 

The theory of Enskog and Chapman depends on the following 

assumptions:   (1)   only binary collisions between molecules are important; 

(2)   the binary collisions are elastic; (3)   the intermolecular force field is 

spherically symmetric; (4)   molecular collisions are adequately described by 

classical mechanics.    Thus the theory applies 3trictly only to monatomic gases 

at moderate pressures and at temperatures high enough that quantum effects 

are negligible.    The extent to which the theoretical relations do not   iply when 

conditions (2) and (3) are not met is not yet known'  K    However,  the theory has 

had success in correlating transport phenomena in polyatomic gp.ses,   so that 

these conditions may not be a severe limitation'   '„ 

^    D. Enskog, Phys.  Zeit.   L2,   56,   533 (1911); Inaug. Diss.  Upsala (1917). 

*2*   S. Chapman, Phil. Trans. Roy. Soc. (London) A211,  433 (1912); A216, 
279 (1916); A217,   115(1917). 

'   '   In the case of the thermal conductivity it is known that the Enskog-Chapman 
theory fails badly when energy may be transported by means of the molecular 
internal degrees of freedom. 

'   '   S.  Chapman and T. G.  Cowling,   The Mathematical Theory of Non-Uniform 
Gases (Cambridge University Press,   Teddington,  England,   2nd edition,   1952), 
p.  7. 



WIS-ONR-1 
19 Jure 1953 

In order to obtain specific information about intermolecular forces 

from transport phenomena,   it is necessary to assume an analytical form for 

the intermolecular potential,   calculate from this the Enskog-Chapman 

"collision integrals",  or "temperature-dependent cross sections",   as a 

function of temperature and the potential parameters,  and evaluate the 

parameters for any specified gas by comparison -with collision integrals 

derived from experimental measurements.    If the theory is correct and the 

chosen potential form suitable,   a single set of potential parameters should 

suffice to describe all the transport properties of the gas,  as well as other 

properties,   such as the equation of state.    Except for very simple and physically- 

unrealistic potential forms, the calculation of the collision integrals involves 

extensive numerical integrations. 

The best intermolecular potential used to date for the study of 

transport phenomena is of the Lennard-Jones form,  with a repulsion term 

varying as the inverse twelfth power of the distance of separation between centers 

of two molecules,  and an attraction term varying as the inverse sixth power of 

the separation distance.    The collision integrals for this potential have been 

evaluated independently by a number of workers*  '"***), and their resultB have 

(5) 
T. Kihara and M.  Kotani, Proc. Phys.-Math. Soc. Japan 25,   602(1943) 

'  '   J. de Boer and J.  van Kranendonk, Physica_14,  442(1948). 

<7>   Hirschfeider, Bird,  and Spots,  J. Chem. Phys. _16, 968(1948); 
1343 (1949). 

<8>   J. S.  Rowlinson,  J.  Chem. Fhys.   17,   101 (1949). 
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(9)-(14) been extensively compared with experiment .    The results obtained 

have not been entirely satisfactory,   and the question arises whether this 

is primarily the fault of the theory or of an inadequate potential form.    That 

the Lennard-Jones (12-6) potential is not entirely adequate is shown by lack 

of complete agreement between theory and experiment even for the rare gases. 

It is the purpose of the present article to describe calculations of 

the Enskog-Chapman collision integrals for a more realistic potential form 

than has been used previously.    It is hoped that some light mav be thrown on 

the reasons for the present lack of complete agreement between theory and 

experiment.    The inverse sixth power term in the Lennard-Jones (12-6) 

potential represents the leading term in the theoretical form for the dispersion 

energy,  but the inverse twelfth power is only an empirical approximation to 

the repulsion energy,   and is not expected to be accurate over a large range of 

separation distance.    There is a considerable amount of theoretical and 

experimental evidence which indicates that the repulsion energy is more 

*  'a   Hirschfelder,  Bird,   and Spotz, Chem. Rev.  44,   205 (1949); Trans. Am. 
S©c. Mech.  Engrs.  71,  921 (1949). 

Hirschfelder,   Curtiss,  Bird,   and Spotz,   The Molecular Theory of Gases 
and Liquids  (John Wiley and Sons,  New York,   1954),  Chapter 8. 

'10*   K. E. Grew,  Proc. Phys. Soc.  (London) 62,   655 (1949); K. E. Grew and 
T.  L.  Ibbs,  Thermal Diffusion in Gases (Cambridge University Press, 
Teddington,  England,   1952). 

*11'   E.  R. S.  Winter,   Trans. Faraday Soc.  46,   81 (1950). 

*12*   E.  Whalley and W.  G.  Schneider,  J.  Chem.  Phys.   20,   657 (1952). 

*13*   B.  N.  Srivistava and M. P.  Madan,  PhiL  Mag.  43,   968 (1952); Proc. 
Phys. Soc.  (London) A66,   277 (1953). 

*14)   AmduT,   Ross,   and Mason,   J    Chem.  Phys.   20,   1620 (1952). 
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suitably described by an exponential form .    Accordingly we have 

chosen the form 

- e -     jzr 
!-(./«£ (1) 

where   cp (r)   is the potential energy of the molecules at separation distance 

r   ,    - 6   is the minimum potential energy,    r       is the value of   r   for which 

q> (r)   is a minimum,   and   fc  is an additional parameter which may be considered 

a measure of the steepness of the repulsion energy.    The next higher term in the 

Q 
dispersion energy,   a term varying as   r        and representing the dipole-quadrupole 

energy,  has not been included since the same effect as adding such a term may 

be achieved to a good approximation by a variation of the parameter   a. 

(15) 

(16) 

(17) 

C.   Zener,  Phys.  Rev.   ST_,   556 (1931). 

R.  H.  Fowler andE,  A.  Guggenheim,  Statistical Thermodynamics 
(Cambridge University Press,   Teddington,  England,   1939),  pp.   276-279, 
291-294,  give a summary of the evidence prior to  1939. 

R.  A.  Buckingham and J.  Corner,  Proc.  Roy.  Soc.  (London) A189,   118 
(1947); J    Corner,   Trans.  Faraday Soc.  44,  914(1948). 

<18)   I.  Amdur,  J.  Chem. Phys.   IJ,   844(1949) 

(19) 

(20) 

J.  L,.  Yntema and W.  G.  Schneider,  J.  Chem.  Phys.   ljj,   646 (1950). 

M.  Kunimune,  J.  Chem. Phys.   ljj,  754 (1950); Prog.  Theor. Phys.   5, 
412 (1950). 
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A typical potential energy curve is shown in Figure  1.    A more 

easily visualized measure of the steepness of the repulsion energy than   oc 

is the ratio   CT  /r       ,  where   0"   is the value of   r   for which (£>   (r) = 0 . 

Table I gives     0" /r       as a function of   c*   ;   included for comparison is 

0" /r       for the Lennard Jones (12-6) potential, 
m 

Table I.    Ratio of the low velocity collision diameter,     (T     ,  to the position of 

the minimum,    rm . 

<* 07r m 

12 0.8761 

13 0.8832 

14 0. 8891 

15 0.8942 

Lennard-Jones (12-6) 0.8909 

A potential of the form of Eq.  (1) was derived theoretically by Slater and 

(21) Kirkwood* for the special case of helium, but its use as a semi-empirical 

form and its extensive application has been carried out mainly by Buckingham (22) 

(21) 

(22) 

J.  C. Slater,  Phys.   Rev.   32,   349 (1928); J.  C.  Slater and J.   G.  Kirkwood, 
Phys.  Rev.  37,   682(1931). 

K. A. Buckingham,  Proc.  Roy.  Soc.  (London) A168,   264 (1938); 
H.  S.  W. Massey and R.  A, Buckingham,   ibid.  A168,   378   (1938); 
A169,   205 (1938); Buckingham,  Hamilton,  and Massey,   ibid. A179, 
103(1941);   R. A. Buckingham and R.  A.  Scriven,  Proc. Phys.  Soc. 
(London) 65,   376 (1952). 



WIS-ONR-1 
19 June 1953 

6 

Fig.   1.    A typical intermolecular potential energy curve. 



WIS-ONR-1 
19 June  3 953 

This potential has the defect that at a small separation distance,    r ,   it r max 
spurious 

has a /maximum,   and approaches minus infinity as   r   approaches zero.    There- 

fore Buckingham usually has used Eq.   (1) only for   r > r       ,   and for   r < r 
m m 

used another form in which the inverse sixth power term of Eq.   (1) was 

multiplied by~ another exponential term to prevent the potential from having 

a maximum.    However,  the maximum occurs at such high energies that it has 

little effect on ordinary thermal collisions,   and we believe it is preferable 

to use Eq.   (1) for   r > r ,   and to set the potential equal to infinity for 

r< r .    We have called this form a modified Buckingham potential,   which 

might be referred to as   the "Exp-Six" potential. 

II.    GENERAL FORMULAS 

According to the theory of Enskog and Chapman,  the transport 

phenomena depend on the inter molecular potential through collisions of single 

pairs of molecules,   and the only feature of a collision which it is necessary to 

consider is the angle of deflection,   X   , through which the relative velocity 

vector of a   pair of molecules under consideration is rotated by the collision. 

The angle  X is given by*23)^24^ 

f°° "3 
X(v,b) = TT-2b      [i-ba/V2- a<9<n/uvz] 2 6r/r% , 

J ' ' (2) 
c 

*     '   E.  H.  Kennard,  Kinetic Theory of Gases (McGraw-Hill Book Co. ,   Inc. 
New York,   1938), pp.   115-122. 

(Z4)   Reference (9b),   Chapter 1. 
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•where   v   is the absolute value of the relative initial velocity of the pair of 

molecules,    b   ,   the collision parameter,   is the  perpendicular distance between 

one of the molecules and the initial line of relative approach of the other, u. 

is the reduced mass of the colliding pair,   and   r      is the distance of closest 

approach during the collision,  given by 

l-bVrc
a-2cp(rc)/^v

2,0 . {3) 

The reduced velocity-dependent cross sections are determined from   X.  by 

S  (K>a[l-a-£I j Jo-cos^ )/S^ } (4) 

where we h*ve introduced the reduced quantities   K=/zv  /Z&       and /3   - b/r 
~ ' m 

Finally,  the reduced collision integrals,  which directly determine the transport 

properties,  are 

(In)* X 
SI   '      (T)  -2 (n.i)!(T*ra J^V's^OOAC, (5) 

where   T*=kT/e      ,    k   is Boltzmann's constant,   and   T   is the absolute 

2 
temperature.    The cross sections have bean reduced by dividing by    TT  r      , 

a) r 
and the collision integrals are just the    XX   (n.)    of Chapman and Cowling'^*), 

divided by their values for rigid spheres of diameter   r      .    Thus   S1     ' (K) 
m 

— OH.,")*        * 
and    •£*< £"T   )   are unity for rigid spheres. 

*25)   Reference (4)s  pp.   157,   160. 
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The values of the transport,  coefficients may be expressed as 

infinite series,   and higher approximations to the coefficients are obtained 

the more terms of the series that are taken.    Fortunately,   the convergence 

is rapid,   and very few terms are needed.    The coefficient of viscosity,   TO 

of a pure gas is 

\ 
£    / MRT 
16    \     TT 

i      i \ 

r- A<«»cn (6) 

•where   M   is the molecular weight,    R   is the gas constant per mole,  and 

f .*     represents the infinite series,  and is a complicated function of the 

collision integrals.    The term   f .      is nearly unity,  and is a slowly varying 

function of   T* ; in Appendix I the expression for the first three terms of   f •* 

is given in terms of the collision integrals. 

The coefficient of thermal conductivity,    A   ,  of a pure gas is 

,       2£    /  RT   Y    £v        f 

where   C     is the molar heat capacity at constant volume of the gas,  and   f . 

is a term similar to   f. The first three terms of   f       are given in terms 

of the collision integrals in Appendix I.    The formula (7) does not take account 

of the large amount of energy transported by the internal degrees of freedom 

of the molecules,  and thus applies only to monatomic gases.    An approximate 

correction for this extra energy transport may be made by multiplying the 
t 
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right hand side of Eq.  (7) by the "Eucken factor"*     )l2')(28)f   which ig ^^Hy 

taken to be (9 T /10 -  1/2) ,  where   Y   is the ratio of the constant pressure heat 

capacity to the constant volume heat capacity of the gas,    N© exact method for 

making this correction has yet been worked out. 

The coefficient of mutual diffusion of a binary mixture of gases of 

types 1 and 2 is 

i 

D « 
3     i     " '- 3RT   \a     fc 

12    ft    \       M,Ma Tt    }      n   (rm)*z£i^'lT*)   (8) 

where   Dn   is the mutual diffusion coefficient,    M     and   M_   are the molecular 

weights of the species 1 and 2,   and  n   is the total molecular density.    The 

subscripts 1,   2 refer to an interaction between a molecule of type 1 and one 

of type 2 .    The term   f_   is a very complicated function not only of   T* , but 

also of   M.  ,    M_ ,   and the composition of the diffusing mixture.    The dependence 
1 ^ 

of   D,2   on the composition is entirely contained in this term,   as well as the 

dependence of   D..    on 1-1 and 2-2 molecular interactions.    The third 

approximation to   f      is given in   Appendix I.    It seemed worthwhile to extend 

the expressions for the diffusion and thermal diffusion coefficients to one more 

*26*   A.  Eucken,  Phys.  Zeit.   \A,   324(1913). 

<27*   Reference (4),  pp.  237-240. 

<28)   Reference (9b),  Chapter 7. 
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approximation than has previously been used for a realistic inter molecular 

(29 V 
potential,  inasmuch as there is evidence that the lower approximations 

might differ from the limiting theoretical values by amounts greater than the 

error involved in determining the quantities experimentally.    The expression 

.or the self-diffusion coefficient,    D      ,  is obtained from Eq.  (8) by setting 

M    = M     and deleting the subscripts 1,   2. 

The general expression for the thermal diffusion ratio is quite 

complicated,  and for computational purposes is perhaps best expressed in the 

determinant notation of Chapman and Cowling.    In this form,  the expression 

for the m-th approximation to the thermal diffusion ratio,    [ k« J m » of a 

binary mixture is 

imif H, + MMS* , (my M , • M2  ^ 

L"T 1M " >n - •' 55 •     ~A (in) ' 

A en) 
where   x.    and   x?   are the mole fractions of the two components.    <JV       is 

a determinant of   (2m + 1)   order,   whose general term is   a.. ,  where   i   and 
ij 

j   range from   -m   torn   .    Oof. . is the minor of    d¥      obtained by 
t 

striking out the  row and col. tin containing   a..    .    Tli? elements   a,,   are 

functions of the collision integrals     f\}  *• » n)*,    the molecular weights of 

the component gases,  avid the composition of the mixture.    The expressions 

for the   a.,   foi1   m - 2   are given in Appendix I. 

*29)   Reference (4),  pp.   169,   196. 
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For binary mixtures of heavy isotopes,  where the forcf " between 

the different molecular species are the same,  Eq.  (9) may be put into a 

simpler form by expanding the determinants in powers of the small quantity 

(M    - M )/(M    + M  ) ,   and keeping only the first power.    To this order of 

approximation, 

l^r-lm'L^TJm  (   M + M "j X'Xa     ? 
(10) 

where      k„, I        is a reduced thermal diffusion ratio,  and is a function of the 1   l   m 

reduced temperature alone.    Since the expression for    [k   J        in terms of 

the collision integrals is complicated,   it is placed in Appendix I.    We prefer 

the function   k      to the more frequently encountered   R       ,  for reasons which 

are discussed in detail at the end of Appendix I.    The two functions are very 

simply related:   R     = (118/105)   k*    . 

For mixtures of gases,   the following three ratios of collision 

integrals occur frequently: 

(a,a)* A.= n<ia7n'""* , 
2 

0,2)* CI,B)«--|      /««'•'>* 

5 (11) 

c* = n    /a 

These quantities are equal to unity for rigid spheres. 
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HI.    NUMERICAL CALCULATIONS 

The first step in the evaluation of the collision integrals is the 

calculation by numerical integration of the angle of deflection,    X.   ,   as a 

function of   v ,    b ,   and the potential parameters     Eq.   (2) is inconvenient 

for numerical computations because the integrand becomes infinite at the 

lower limit of the integral.    This singularity may be removed by substituting 

into Eq.  (2) the value of   b   from Eq.   (3),   and making the change of variable 

sin 9 s r    lr .   after which Eq.  (2) may be rearranged into the   form 

i 

a/* / a f,     sin 6 time        (Wcc)e       e    sin 6 - e x=^- —     u-,;,      , r i- 
y   J       L       K(i-G/a)y6' KCl-C/o;)   V cos"© (12) 

•where   y   is the reduced distance of closest approach, r   /r     ,  and   A     is the c    m / 

reduced collision parameter,    b/r     ,  given by 
m 

The integration in Eq.  (12) was performed numerically,  the integrand being 

evaluated at intervals of    0    =   TT /60   in cases where the integrand varied 

rapidly with    0    ,    but otherwise at intervals of  0   =   n   /20 or     TT /12 , 

depending on the behavior of the integrand.    The integrand in Eq.  (12) 

becomes indeterminate at   0    =   TT /2 , but may be shown by L'Hospital's 

Rule to approach the limit 
<      «(i - y) 
fee /-*y  _ A 

 =     +     — ;        — -   I 
(14) 
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The numerical integration of Eq.   (12) was sufficient to determine   X   to a few 

ten .thousandths of a radian.    Values of   X   ,  together with the corresponding 

values of /9    ,  have been tabulated as a function of   y   and   K   for    &    =12, 

13,   14,   and 15;   the length of the tabulations prevented their publication 

in the present paper*       .    The tabulations cover thirteen values of   K   for 

each value of    oc   ,   as in Table III,   and an average of about   20   values of   y   for 

each  K .'   The size of the intervals on   y   varies from   0.005 to 0.40,  depending 

on the behavior of    X   >  and was chosen so as to obtain an accuracy of 0. 1 

percent in the integration for   S* * '(K) . 

The calculation of   X   was complicated by the fact that for some 

collisions which occur at less than a certain critical energy,    K     ,  the 
o 

molecule? may "orbitf around each other for an indefinite number of 

rew utions,  and X  consequently   tends to minus infinity.    Such orbiting 

collisions have been discussed in connection with the .Lennard-Jones (12-6) 

potential*   "     ' ,  and the same general behavior is observed with the present 

potential.    For energies equal to or less than   K    ,  there is a critical value 

of beta, /S ^ ,  for which orbiting will occur.    There are two values of the 

distance of closest approach,    y   ,    which correspond to    /3      ; values of   y 

between these two critical ones cannot occur physically.    The larger   y , 

designated as   y    ,  will cause the integrand of Eq.  (12) to become infinite at 

the upper limit,  so that the value of   y     may be determined by numerical 

'   Muitigifcphed tables may be obtained from the author on request. 
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solution of the equation 

(6/rf)e 
ac( I- y ) 

(-^-')"°.   (15) 
K0-(./«)y' K(i-'A) \      2 

which is obtained from. Eqs.  (12) and (14).    The value of    A       may 
o 

be found by substituting the value of   y     into Eq.   (13) and solving.    The 
o 

smaller 'value of   y   ,  designated as   y    ,   also satisfies Eq.  (13) with    ,6-/5     , 

and may be calculated in this way.    At   y = y     the integrand of Eq.  (12) becomes 

infinite for   Cj) = arc sin(y./y ).    Between   y = y     and   y = y     there are two 

values of   y   which give the same   A    when substituted into Eq.   (13), but 

these values are without physical significance.    Values of   3   ,    y    ,  and   y 
' ° o 1 

for  several values of  K   are given in Table K;    y     and   y     become equal at 
o 1 

o 

For small values of   X   .  it Is useful to have the asymptotic 

series,  valid for large values of   y : 

X- 
/5TT 

<°      LK(l-4/«)y' 
sis rr 
ioa.4- K(l-0/«)  y6 

(&M) e 
ot(i-y) 

K(i- &/*; 

TTocy   \ 
i - 

/    \ a   j      ,. 

(16) 

which was obtained by the method of Amdui and Pearlman (31) 

(31) I. Amdur and H.  Pearlman,  J. Chem. Phys. 9,   503 (1941); 
I. Amdur,  J. Chem. Phys.   15,  482(1947). 
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fc K A y0 y, 

12 .4 1.7916 1.4468 .9694 

K    = .78101 
o 

1.5835 1. 1849 1. 1849 

13 .4 1.7716 1.4353 .9649 

.8 1.5636 1.2098 1. 1076 

K    = .82691 o 
1.5530 1. 1708 1. 1708 

14 .4 1.7555 1.4253 .9621 

.8 1.5530 1.2209 1.0710 

K    = .86809 o 1.5281 1. 1594 1.1594 

15 .4 1.7421 1.4166 .9604 

.8 1.5437 1. 2248 1.0504 

K    = .90530 o 1.5075 1.1498 1.1498 
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( i ) To evahiate the cross sections   S        (K)   defined in   Eq.   (4),   the 

integration variable was changed from &   to   y   ,   and Eq.   (4) transformed to 

a. 
.      1 1+ (-!)*• I 

1 + 4 

0* cos**.) 
oc(i-y) -\ 

K(i-t/fe)y<»     K(l-6/k.)       l 5        T    V' 

(17) 

where   y     is the value of   y   for which  A    = 0 ,   and represents the reduced 

distance of closest approach for a head-on collision.    Most of the integration 

could then be carried out numerically,  using the values of  X tabulated as a 

function of   y   for a given   K   and   «    .    To avoid the necessity of calculating 

accurate values of   y     from Eq.  (13),  the numerical integration was started 

from a lower limit   y.    which was slightly greater than    y    ,   and the integration 
•A C 

from   y      to   y.    executed as follows.    Eqs.  (12) and (13) were differentiated 

to form   (d X /d /5  )   in terms of X   and /i   for   the limit of   ft  —*    0 . 

Solution of the resulting differential equation then showed that   X   varied linearly 

with /i    when /3    was near zero,  so that the integration from   y     to   y      could be 
C J\, 

performed analytically.    The equations obtained for these small contributions 

to the cross sections are: 

2 

co5(n-vV^ sin(n-XA) , 

(i) a     a     3 

(ir-XJL 
l- cos l(n-Xj I JJL   5in a(ir-X4) 

**   TT-X. A   ' 

(18) 



; 

(3) 

K'w-K-i cJEVl-e"<-x»>]-i ^['-"-f-v 
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< 3 ^A 
*Z  ^Tx     Sirt3^ir-XA)*  J  ^       - XJ 

A'    5 

A   (K).   fe A   +   f-c,   £^r,  r.-C0S4(TT-XA) A        a-ri  (TT-X, 

16 (tr-X/ cos 2 ("n - xA) 5     A 
A -£2~   sin 4(TT-XA) 

(18) 
(cont.) 

| J&J- sin.rt-^), 

where the   A^ ^ '(K)   are the contributions to the   S' ^'(K)   for the range   y 

to   yA ,  and   /6   .    and     X A   are the values of /3  and   X  corresponding to 

y The numerical integration of Eq.  (17) when no orbiting occurred 

(K  >  K )   was carried out from   yA   to   y£   ,  where   y£   was a large value 

of   y   .  and the remainder of the integration,  from   y       to infinity,   carried 

out by substituting the small angle formula, Eq. (16),  into Eq.  (17),  expanding 

(1 - cos     X  ) »  and integrating analytically to yield: 

JLV- x    f+l    JF   «)   -  [ l6 ) yE [,oUo-6/-)y;J "iTa. A K (!-<./«.) yfc 

H57T\(fc/oQe       j   / 37T Vr,      _£ 
V  l^/   K(i-fc/*)      \*7 J L       8«- 

37 223 
Safety V 

(19) 

where   F** '(K)   is the contribution to   S* * '(K)   for the range   y       to 

infinity. 
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When   K   is equal to or less than the critical energy for orbiting, 

K    ,  numerical integration of Eq.  (17)   cannot be carried out over the entire 

range from   y      to   y      because:   (1)   the region from   y     to y     is physically 
A E 1 O 

inaccessible,   and in fact   X.   is imaginary there;   (2)   the integrand oscillates 

violently near   yv    and   y    ,   where    X.   goes to minus infinity.    For 

K   ^    K     the integral from   y .    to   y„   was therefore broken up into   four o 6 7A 7E 

integrals:   B^ >(K) ,    C* i *(K) ,    D^^K),   and   E^ )(K) .    The integral 

gl I '(K)   extended from   y      to   y     ,   where   y      was slightly   less than   y    , 

( I ) and was evaluated numerically.    Similarly,  the integral   E        (K)   extended 

from   y    , where   y      was slightly greater than   y    ,    to   y    ,  and was also 

evaluated numerically.    The integrals   C   * '(K)   and   D* *> '(K),    covering 

the regions   y      to   y.    and   y     to   y^* ,  respectively, were calculated by the 

method of Hirschfelder, Bird,   and Spotz*  ' ,  in which   X   is represented 

near the regions of orbiting   by equations of the form 

x- cw./W/) , 
(20) 

and Eq.  (4) is integrated analytically between the proper limits.    The results 

of this integration are: 
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tmiK)'(fi^fl-)[\- C0SXe + XB   smXB-?taB Ci ,'-X3)] . 

(i) 
3 t „*      a\r (K)=^A ^U-cosaX   +*x   s.n2X  -4x   C,:(-2X   )! 

•6-'J  > 

20 

(Si 

c CK>- i(A-<) 4-   cos 3X„- 3 co5XR
+ 3X« sm.'3X •5     B     ^6 —-r«. B 

•3VlnV^^--^8*B)-*^Ci(-Xe) 

(21) 

„^/ 5/2       1\ 
5" -  cos 4- X& - V- cos 2XB + +. X    Sin 4- X^ 

+ 8 XB sinaXB-l6X* Ci (-4XJ 

- '^ X&  Ci (-2XB) 

where   /6       and X        are the values of /5   and   X corresponding to   y     ,  and 
B B B 

(32) Ci(-  X      )   i8 tne cosine integral,   a tabulated function*       ,  defined as follows 

r r. /   \- /    cos t CL^Z)'     —p   dt 
(21b) 

The   D* * '(K)   are of the same form as the   C* *• J(K) 

/   A    \ 
The cross sections   Sx * '(K)    are not convenient to use directly, 

since they vary rapidly when   K   is small,   and tend to infinity as   K   goes to 

(5) 
zero.    Kihara and Kotani have shown that in the limit   K —* 0 ,  the cross 

(32) 
Federal Works Agency, Work Projects Administration for the City of 
New York, Tables of Sine, Cosine, and Exponential Integrals, Vol. II 
(1940); Table of SinTand Cosine Integrals (1942). 
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sections are independent of the potential energy of repulsions   and depend on the 

attraction energy alone.    From this it is easy to show that the   S      '(K)   are 

r i -i/3 
proportional to      j Kfl - 6 / <x ) J for   K -~* 0 ;   we therefore define the 

functions   R^ ^(K)  : 

,(i ) RU '(K) =    [K(l - 6/cOJ S*X)(K) , uKah (22) 

which are given in Table III ,   and plotted for    <X   =12 and 15 in Figure 2 for 

the two most important cases, X. - 1 and    2.    For comparison,   the analogous 

functions for the Lennard-Jones (12-6) potential are also plotted.    Since 

R       (0) is independent of ths repulsion,  the values given in the table for Z = 1 

and 2   were taken directly from Kihara and Kotani*  ' „    For   i    =3   and   4  , 

the values of    R      '(0)   were obtained by extrapolation,   a procedure which is 

permissible because these functions occur in the expressions for the transport 

properties only as correction terms. 

For use in evaluating the collision integrals,   the cross section 

functions were approximated by the following algebraic expressions; 

osK <  0.8   • 
a 

CD     I ji)       a)   i      U)  3 
R   (K)-R   (0) (I + a,     K   +ax   K    )j 

S   (K)-a    K  +af K + as   i-a, K  + a7 K 0.?<K   <  2 

(0 0) Ci) C'>    -I (»>    _2 
S  00-af K + G-,  + <ilCK   +a„K 

5V)» a     * a9 K   •«.|Dlf   •a,, K     l*\ 

S   "00- a(1 + a,(3K   4 al4 K   +  a/5 K * 
(i)     -2 

.1 

J < K 1 10   , 

/0iK<   °° 

(23) 
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Table in.    Cross section functions, R(i><K) 

(1) 
R      (K) 

^K^\* 12 13 14 15 

0 1.5778 1.5778 1.5778 1.5778 
0.4 1.5701 1.5588 1. 549 5 1.5490 
0.78101 1.5327 
0.8 1.5280 1. 5277 1.5275 
1.0 1.5178 1.5297 1.5320 1.5282 
1.2 1.4083 1.4392 1.4566 1.4811 
1.6 1.2271 1.2714 1.3027 1.3282 
2 1.1336 1.1743 1   2073 1.2350 
3 1.0361 1.0805 1. 1177 1.1509 
4 1.0119 1.0613 1. 1018 1.1366 
5 1,0109 1.0626 1. 10 70 1.1443 

10 1.0646 1.1297 1. 1865 1.2356 
20 1.1546 1.2401 1.3107 1.3769 
50 1.2824 1.4032 1. 5069 1.6000 

100 1.3676 1.5226 1.6579 1.7811 

R
<2)(K, 

0 1.7865 1.7865 1   7865 1.7865 
0.4 1.7923 1.7936 1. 7985 1.7980 
0.78101 1.7991 
0.8 1.8001 1.3060 1.8045 
1.0 1.8357 1,7864 1.7959 1.7984 
1.2 i_g94X l     on->n i • u 1 Ai i 1        OJ^ 1^ 

A.OU6J 1.OOUH 

1.6 1. 8344 1   8688 1.8826 1.3918 
2 1.6929 1   7333 1.7587 1.7726 
3 1.4442 1,4921 1.5288 1.5621 
4 1.3418 1.3870 1.4305 1.4619 
5 1.2:986 1.3489 1.3918 1.4274 

10 1.3051 1.3676 1   4200 1.4689 
20 1.4141 1.4972 1.5605 1.6272 
50 1.6063 1.7233 1.8294 1.9171 

100 1.7599 1.9129 2.0461 2.1613 
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sections are independent of the potential energy of repulsion,   and depend on the 

f 6 \ 
attraction energy alone.    From this it is easy to show that the   S        (K)   are 

7    /I 

proportional to      | K(l - 6/'oc ) J for   K — * 0 ;   we therefore define the 

functions   R^ * ^K) : 

R{i ^K) =    [K(l-6/ct)J S(^(K), (22) 

which are given in Table HI ,   and plotted for    <X   =12 and 15 in Figure 2 for 

the two most important cases, Jt  = 1 and   2.    For comparison,   the analogous 

functions for the Lennard-Jones (12-6) potential are also plotted.    Since 

R        (0) is independent of the repulsion,  the values given in the table for 1=1 

and 2   were taken directly from Kihara and Kotani*  ' „    For   i    =3   and   4  , 

(I ) the values of    R  '    (0)   were obtained by extrapolation,   a procedure which is 

permissible because these functions occur in the expressions for the transport 

properties only as correction terms. 

For use in evaluating the collision integrals,   the cross section 

functions were approximated by the following algebraic expressions: 

ji)       a)   (       a), i     (i)j, „ .    „ 
R   (K)-R   (0)(n-a,     K   ^a1   K    )j o*K< o.% • 

5   (K)«aK   • a+K + a*   *-a, K  +a7 K    (        O.S<K < 2 •> 

CO (1) co co    -1 w   -3 
S   (K)-a8 K+a9   u;0K   +al|K 

U) (i)        ci)  -i      f-0, -a     U)  -3   „ 
5   (K)- %   + a9 K   +il6K   •a,, K 3

;i*;j 

2< K £ (0  , (23) 

S   VK)» a(1+ a.J9K   4 atiK   +  a/5 K *   ? " 
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Table III.    Cross section functions, R( ^(K) Continued 

R^3)(K) 

^*^^ 
12 13 14 15 

0 (1.8236) (1.8236) (1.8236) (1.8236) 
0.4 1.8115 1.8005 1.79 38 1.7987 
0.78101 1.7831 
0.8 1,7749 1.7821 1.7745 
1.0 1.7796 1.7833 1,7778 1.7797 
1.2 1.6788 1.6930 1.7042 1.7285 
1.6 1.6121 1.6333 1.6433 1.6595 
2 1.5325 1.5665 1.5884 1.6151 
3 1.3587 1.4012 1.4376 1.4692 
4 1.2689 1, 3167 1.3557 1.3934 
5 1.2256 1.2776 1.3206 1.3574 

10 1.2222 1.2875 1.3447 1. 3893 
20 1.3151 1.3993 1.4632 1.5363 
50 1.4922 1.6047 1   7045 1.7928 

100 1.6115 1.7641 1.8980 2.0141 

R<V) 
0 (1.9100) (19100) (1  9100) (1.9100) 
0.4 1.9335 1.9208 1.9225 1.9274 
0.78101 1.9345 
0.8 1.9178 1.9221 1.9586 
1.0 1.9330 1  9191 1.9065 1.9107 
1.2 2.0278 1  9948 1.9907 1.9674 
1.6 1.9600 1  9878 1.9770 1.9983 
2 1.8895 1.9176 1  9300 1  9258 
3 1.6584 1.7026 1.7363 1.7663 
4 1.5197 1,5623 1.6045 1.6348 
5 1.4433 1.4941 1.5328 1. £705 

10 1.3868 1.4514 1.4987 1.5488 
20 1.4838 1.5670 1.6252 1.6893 
50 1.6931 1.8089 1.9105 1.9954 

100 1.8636 2.0136 Z   1450 2.2558 
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This curve-fitting procedure effectively permits the extrapolation of the 

S        (K) to infinite   K    ,   which is necessary because the potential energy 

function    CP    (r)   of Eq.  (1) misbehaves for very small values of   r   by 

becoming negative. 

The final integrations with respect to   K   to obtain the collision 

integrals defined in Eq.  (5)   could be carried out by replacing   Sx     '(K)   in 

Eq.  (5) by the algebraic expressions obtained fromEqs.   (22) and (23). 

For   K > 0.8,  the resulting integrals could be easily evaluated in terms of 

elementary functions and error integrals,   which are tabulated functions.    For 

K < 0.8 ,  the integrations were performed numerically for large   T*,  where 

this region did not contribute greatly to the result,   and for small   T*    by 

(33) 
means of incomplete gamma functions tabulated by Kotani      ',    In practice it 

turned out to be easier also to integrate numerically for   K > 0. 8 when   T* 

was large.    For numerical integrations,   \       algebraic expressions in Eq.   (23) 

( $ ) were used only as interpolation functions to obtain values of   S        (K)   at 

small intervals of   K . 

The collision integrals are not especially well suited to tabulation 

because their rapid variation for small   T*   makes interpolation difficult 

unless the tabulations are made lor  small intervals of   T*.    A more suitable 

function for tabulation is 

Z{i '  n)(T*) -    [ T*(l - 6Ju ))     W3      fl l l ;  n)(T*) . (2:4) 

(33) 
M.  Kotani,  Ptoc    Phys.-Math    Soc    Japan 24,   76 (1942). 
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This function varies relatively slowly with   T*,   and unlike      i"l * ^ '  n'   (T*) 

is finite and independent of the parameter   a.    when   T* = 0 .    The functions 

Z       '      (T*)   are tabulated in Table IV for   T + from   0 to 200  .    The inherent 

computational error is estimated to be of the order of 0. 2 percent,  except 

tor very small   T* ,  where it may be as large as one percent.    To maintain 

internal consistency,  more figures are given in Table IV than is strictly 

justified by the estimated error.    The reason for the lower estimated accuracy 

(I ) at small   T*   is that the cioss section functions   R       (K)   seem, to have an 

oscillatory behavior when   K   is smalls  but no attempt was made to follow this 

behavior in detail since many calculations at closely spaced values of   K   would 

ha^e been necessary.    The labor involved did not seem worthwhile, particularly 

since the neglect of quantum corrections at low   K   is probably a much more 

serious error. 

IV.    ADDITIONAL TABULATIONS 

In Table V are presented the functions, f , which give the higher 

approximations to the transport coefficients for pure gases; the superscripts 

indicate that these are the third approximations rather than the exact values. 

The function   t      for a pure gas refers to the coefficient, cf self-diffusion. 

The second approximation to the reduced thermal, diffusion ratio for 

a binary mixture of heavy isotopes,     I kip J   ^ »    *8 given in   Table VI   as a 

function of   T* ,   and plotted in Figure 3 for     a    = 12 and 15.    For comparison, 

the function     Lk^i   for the Lennard-Jones (12-6) potential,   as calculated by 

the method of Chapman and Cowling.,   is also shown in Figure 3.    It is of interest 
r -. 

to note that   [ k    J ^   is always positive for a s 15,   showing that there is no 
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inversion, temperature when the repulsive portion of the potential    (p   (r) is 

steep enough. 

Table VII gives the values of the ratios   A* ,    B*   ,   and   C* 

•which occur in the expressions for the transport properties of mixture? 

The dimensionless group       ? D     / Y]     ,   frequently encountered in kinetic 

theory,   is given by   (61^/51^ )A*    . 

Experimental viscosity results are often expressed by an equation 

of the form 

t[ = cTS^ , (25) 

where   c   and   sr       are supposed to be constants for a particular gas.    The 

temperature index,    s -  ;   is seen to be given by 

s ^    =diog7|  /dlogT. (26) 

The temperature index has the following physical significance:   if the 

intermolecular potential were of the form   (p (r) = const. /rv    ,    then   s ~ 

would be constant and equal to      I  1/2 + 2/( V   - 1) I We can investigate the 

behavior of   B.      for the potential given by Eq.   (1) by requiring that the values 

of   T)    and   d Tj   /dT   determined from Eq.   (25) agree with those from Eq,  (6) 
I i 

at a given temperature.    In this way we find that   s „     is not a constant,  but 
I 

the following function of   T* : 

i      4^ ° lo9 h 



WIS-ONR-1 
19 June 1953 

28 

•where we have made vise of the recursion relation 

d loq 11 in 
 2 .(n+a)    ^± - ! 

Another common method of expressing experimental viscosity results is by the 

Sutherland equation, 

c' T* 
\' iTy? ' (29) 

where   c'   and   S-.     are supposed to be constants for a particular gas.    This 

equation is based on the physical model of rigid spheres which have a weak 

attraction for one another.    The physical significance of the Sutherland 

constant,    S        ,   is that it is proportional to the potential energy of two such 

spheres when in contact.    "We can find the dependence of   S,    on   T*   in the 

same way that the behavior of   s^     was found; it is 

T *('-^>»]/K n(a-a)*/      dioaT* (30) 

An entirely analogous result holds for the coefficient of thermal 

conductivity,   A   .    The expressions for   s .     and   S »    /T   are   the same as 

given in Eqs.  (27) and (30).  respectively,  except that   f -    is replaced by   f ^ 

In a similar wa/,   we can define a temperature index for self- 

diffusion, 

sD =dlogDu/dlog T , (31) 
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and a Sutherland constant for self-diffusion 

//   n-i  i 
C      I 

Dn =     I -i- S /T 
D 

(32) 

If   D, ,    in Eq.  (31) is expressed at constant density,   we find that the temperature 

index   s       is the following function of   T* : 

1 3XX 
0,3)* 

d loai 

D = ^ XI 
an* 

<tTD 

diojT* 
(33) 

For the Sutherland constant   S    /T   we obtain 

0,2)* 

ilok.1 •3i 
^°'a>*l    j lo<* ^ 
n0-"*/   dioaT' (34) 

independent of whether   D        is expressed at constant density or constant 

pressure. 

Values of the temperature indexes for viscosity*  thermal 

conductivity,   and self-diffusion were calculated from Eqs    (27) and (33) 

neglecting the terms involving   f.    ,   and are given as a function of   T*   in 

Table VIIIA.    The error introduced   by neglecting the terms in   f   is in all 

cases less than one   percent.    In Figure 4A is plotted sv     vs.    T*   for 

<X = 12   and    15 ,  together with the coiresponding   s„      for the Lennard- 

Jones (12-6) potential for comparison     Values of the Sutherland constants 

are given in Table VIIIB,   and plotted in Figure 4B for cc   = 12   and    15 , 

and the Lennard-Jones (12-6) potential      The neglect of the terms involving 

f   in the calculations of the Sutherland constants introduced an error of less 

than one percent. 
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Numerical values of the potential parameters of Eq.   (1) for a 

particular gas may be calculated by comparison of the experimentally 

determined values of   S/T   or   s   with the theoretical values in Table VIII. 

Caution must be exercised if this procedure is used,  however, because 

inconsistent results maybe obtained unless the experimental quantities are 

calculated in the same way as the theoretical quantities were; that is,  from both 

the temperature derivative and the numerical value of the transport coefficient 

at a given   temperature. 
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Table    IV Collision Integral Functions o, 

Za'n)(TVtT*(i-t/oO]^<1,0)V*) T'-JtT/e 

oc= 12 

f* z(l,   1) z(l,   2) z«l,   3) z{1.4) Z*1-   5) Z(3- 3) 

0 1.1870 1.0551 0.9672 0,9027 0.8572 1.1178 
. 1 1.1911 1.0 523 0.9584 0.8883 0.8320 1. 1079 
. 2 I. 1662 1.0142 0  9025 0   8113 0,7338 1.0704 
.3 i.1243 0.9515 0   8232 0.7239 0.6475 1,0161 
4 1.0750 0.8900 0.7597 0.6667 0.600 5 0.9641 

, 5 1.0 282 0.840 2 0.7160 0.6328 0.5764 0.9194 
..6 0.9873 0.8025 0.o870 0.6131 0,5643 0.8828 
.7 0.9530 0.7745 0.6679 0.6019 0.5589 0.8536 
.8 .    0.9248 0.7538 0.6555 0.5959 0.5572 0.8305 
.9 0.9016 0.7387 0.6475 0.5930 0.5576 0.8125 

1.0 0.8825 0.7272 0.6425 0.5923 0.5593 0.7985 
1.2 0.8541 0.7130 0,6385 0.5942 0.5646 0.7793 
1.4 0.8350 0.70 58 0   6388 0.5985 0.5711 0.7684 
1.6 0.8221 0.7028 0.6414 0.6039 0.5779 0.7625 
1.8 0.8135 0.7025 0.6451 0.6096 0.5845 Or: 7601 
2.0 0,8080 0.7037 0.6496 0.6155 0.5910 0.7600 
2.5 0.8023 0.7104 0.6616 0.6296 0.6059 0.7654 
3.0 0.8031 0.7195 0.6735 0.6425 0.6180 0.7746 
3.5 0.8070 0.7288 0.6847 0.6541 0.6305 0.7853 
4 0=8126 0.7382 0.6950 0.6644 0.6404 0.7963 
5 0.8253 0.7556 0.7129 0.6819 0.6572 0.8J.74 
6 0.8384 0.7709 0.7280 0.6962 0.6705 0.8364 
7 0.8509 0.7842 0.7409 0.7081 0.6817 0.8533 
8 0.8623 0.7961 0.7520 0   7185 0.6912 0.8680 
9 0.8730 0.8067 0,7618 0   7272 0,6993 0   8813 

10 0.8829 0.8160 0.7702 0   7351 0.7066 0.8929 
12 0.9002 0.8322 0.7848 0.7485 0.7189 0.9133 
14 0.9150 0.8457 0.7969 0   7594 0   7292 0.9301 
16 0.9280 0.8572 0.8074 0.7690 0.7380 0.9444 
18 0.9394 0.8674 0.8164 0.7773 0.7459 0.9568 
20 0.949 7 0.8762 0.8245 0. 7846 0.7530 0.9680 
25 0.9710 0.8951 0.8415 0   8007 0.7682 0.9910 
30 0.9885 09103 0.8555 0.8138 0.7808 1.0094 
35 1,0032 0.9232 0.8674 0.8253 0   7921 1.0250 
40 1.0157 0.9346 0.8781 0   8355 0.8021 1.0385 
45 1.-6 270 0.9446 0.8876 0   8450 0   8114 1  0508 
50 1.0371 0.9538 0.8965 0.8535 0.8199 1.0614 
60 1.0549    " 0.9701 0.9123 0.8691 08355 1.0807 
70 1.0700 0.9846 0.9264 0.8827 0   8495 1.0978 
80 1.0834 0.9973 0.9388 0,8957 0   8622 1.1129 
90 1  0959 1.0091 0.9504 0.9074 0.8743 1. 1265 

100 1. 1071 1.0201 0.9615 0  9184 0   8853 1. 1391 
.   200 1. 1906 1. 10 38 1.0462 1  0049 0  9729 1.2356 
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Table LV Collision Integra.! Functions continued 

0C = 12 

T z(2    2i ZC2   ;>, ZU.   4) z(2,   5i z(2,   6) Z<4-   4> 

0 1.1947 1.0951 1   0221 0   9706 0   9193 1.0927 
1 1. 1983 1. 1002 1   0 29 1 0   9750 0,9323 1.1062 

.2 1   2098 1. 1094 1,0401 0   9770 0.9188 1. 1119 
3 x.2065 1.0936 0   9978 0   9129 0.8381 1.0843 

1   1799 1.0471 0   9367 0   8453 0,7711 1.0360 
. 5 i.1421 0.9974 0,8835 0   7953 0.7280 0.9870 
.6 1   1028 0.9538 0   8428 0   7614 0.7017 0.9450 
.7 IS 667 0,9185 0.8133 0   7391 0.6862 0.9111 
.8 1,0352 0   8907 0   7923 0   7249 0.6775 0   8847 
9 1.0084 0   8692 0   7775 0.7160 0.6731 0.8642 

1.0 0.9859 0.8528 0.7673 0.7108 0.6716 0.8488 
1. 2 0.9520 0.8309 0   7561 0   7075 0-6736 0.8282 
1.4 0.9290 0.8189 0   7525 0.7093 0.6790 0.8170 
1.6 0,9137 0   8130 0   7531 0   7139 0,6860 0.8120 
1.8 0.9039 0.8111 0   7560 0   7198 0.6936 0.8107 
2.0 0.8978 0.8116 0   7604 0   7263 0   7014 0.8119 
2.5 0.8930 0.8189 0   7742 0.7435 0.7202 0.8207 
3.0 0   8963 0   8300 0   7891 0   7600 0.7374 0.8331 
3.5 0  9033 0   8423 0.80 35 0   7752 0.7529 0.8466 
4 0.9122 0,8546 0   8171 0   7892 0   7668 0.8599 
5 0.9313 0   8778 0   8415 0   8135 0.7906 0.8849 
6 0.9503 0.8987 0   8623 0.8339 0.8105 0.9072 
7 0.9681 0  9172 0   880 6 0   8516 0.8275 0.9269 
8 0.9845 0.9339 0   8967 0   867C 0   8424 0.9445 
9 0.9995 0   9488 0   9110 0   8808 0   8559 0.9602 

10 1.0133 0  9624 0   9241 0   8935 0   8678 0.9745 
12 1.0381 0  9862 0   9469 0   9153 0   8891 0.9998 
14 J   0598 1.0068 0   9664 0   9341 0   9073 1.0213 
16 1.0788 1  0 248 09838 0   9508 0.9236 1,0404 
18 1.0958 1  0409 0   9993 0   9658 0   9383 1  0575 
20 1      H! J i    ncc7 1       A  1   1 A r\     r\ in L />     r\ r \ / t      r\ ** ^ * *            *   M.           <* *      "*** • X    r    \J    X.     #T u     7I7U \J     731U 1 -   U   1 J A 
25 1.1448 1   0875 1   0441 1   0095 0.9812 1. 1070 
30 1   1729 1. 1145 1.0 70 3 1   0353 1.0067 1.1357 
35 1.-1976 1   1382 1   09 35 1   0582 1  0294 1. 1608 
40 1.2193 1. 1593 t   1143 1   0787 1   0499 1.1832 
15 1.2393 1.1786 1   1332 1   0976 1.0688 1.2041 

"50 1.2573 1   1962 1   1509 1   1152 1   0863 1.2228 
60 1.2901 1   2283 1   1826 1„ 1469 1   1180 1.2572 
70 1   3189 1   2571 1   2113 1   1756 1   1468 1.2878 
80 1.3451 1   2828 1   2370 1   2014 1   1730 1.3157 
90 13690 1   30 68 1   2609 1   2257 1.1973 1   3413 

100 1   3915 1.3292 1   2835 1   2481 1   2198 1.3649 
200 1   5600 1   4988 1   4 547 1   4208 1   3939 1.5470 



Table   IV Collision Integral Functions continued 

WIS-ONR-1 
19 June  1953 

33 

0L~ 13 

T* zd. i) ZU,   2) Z*1-   3) Z*1'  4> Zi1'   5) Z<3>   3) 

0 1. 1870 1.0551 0.9672 0.9027 0.8572 1.1178 
. 1 1. 1813 1.0447 0.9528 0.8846 0.8305 1. 1020 
.2 1.1618 1.0150 0.9C84 0.8217 0.7479 1.0718 
. 3 1. 1275 0.9619 0.8389 0.7429 0.6681 1.0250 
.4 1.0851 0.9071 0.7807 0.6893 0.6236 0.9787 
. 5 1.0436 0.8617 0.7400 0.6575 0. 6011 0.9383 
.6 1.0068 0.8268 0.7129 0.6393 0.5904 0.9048 
.7 0 9756 0.8009 0.6953 0.6294 0.5862 0.8780 
.8 0.9498 0.7818 0.6841 0.6244 0.5855 0.8569 
.9 0.9285 0.7678 0.6772 0.6226 0.5871 0.8405 

1.0 0.9112 0.7577 0.6732 0.6229 0.5897 0. 8279 
1.2 0.8854 0.7454 0.6710 0.6266 0.5970 0.8111 
1-4 0.8684 0.7400 0.6729 0   6326 0.6052 0.8022 
1.6 0.8573 0.7386 0.6770 0,6395 0.6136 0.7981 
1.8 0.8503 0.7396 0.6823 0.6468 0.6219 0.7974 
2.0 0.8461 0.7421 0.6881 0.6542 0.6299 0.7987 
2.5 0,8436 0.7519 0.7032 0.6715 0.6483 0.8073 
3.0 0.8472 0.7637 0.7181 0.6875 0.6643 0.8193 
3.5 0.8535 0.7757 0.7320 0.7017 0.6785 0.8323 
4 0.8614 0.7874 0.7446 0,7145 0.6910 0.8454 
5 0.8782 0.8091 0.7671 0.7365 0.7121 0.8700 
6 0.8950 0.8282 0.7862 0.7547 0.7296 0.8922 
7 0.9107 0.8451 0.8024 0.770 2 0   7441 0.9118 
8 0.9253 0.8601 0.8166 0.7836 0.7568 0.9294 
9 0.9389 0.8734 0.8292 0   7954 0.7678 0.9453 

10 0.9514 0.8855 0.8404 0.8059 0.7777 0.9596 
12 0.9736 0.9065 0.8599 0.8240 0.7948 0.9847 
14 0.9927 0.9245 0.8765 0.8394 0.8094 1.0063 
16 1.0096 0.9399 0   8907 0.8528 0.8223 1.0250 
18 1.0247 0.9537 0.9034 r,   at AQ 

V   ,   U -I -* I 
1       n   .  .   *. 
X.U111 

20 1.0384 0.9659 0.9147 0.8754 0   8440 1.0569 
25 1.0674 0.9922 0.9392 0.8987 0   8664 1.0895 
30 1.0913 1.0139 0.9596 0.9184 0. 8855 1.1166 
35 1. 1118 1.0328 0.9775 0  9357 0.9027 1. 1403 
40 1. 1296 1.0492 0.9933 0.9510 0.9179 1.1616 
45 1.1456 1.0643 1.0076 0.9651 0.9318 1.1806 
M 1.1602 1.0778 1.0208 0.9783 0.9447 1.1983 
60 1.1861 1. 1023 1.0447 1.0017 0.9682 1.2297 
70 1.2087 1.1239 i.0659 1.0 230 0.9894 1.2577 
80 1.2287 1.1431 1.0849 1.0422 1.0089 1.2830 
90 1.2469 1. 1608 1. 1025 1.0598 1.0267 1.3063 

100 1.2639 1,1774 1, 1193 1.0762 1.0434 1.3277 
200 1.3892 1   3027 1.2456 1.2042 1. 1723 I     1.4915 



Table    IV. Collision Integral Functions continued 19 June  1953 

a s 13 

x* z(2. •"*> Z<2.   3) Z<2»  4) Z(2,   5) z(2,  6) Z<4,  4) 

0 1.1947 1.0951 1,0221 09706 0.9193 1.0927 
.1 1.1985 1.0994 1  0269 0.9709 0.9265 1.0986 
.2 1.2052 1.1090 10376 0   9783 0.9247 1.1116 
.3 12056 1.0977 1.0077 0.9278 0.8562 1.0944 
4 1.1862 1.0602 0.9549 0   8664 0.7934 1.0526 

- 5 1.1549 1.0164 0.9059 0.8190 0,7519 1.0076 
.6 1.1207 0.9766 0.8676 0.7866 0.7267 09681 
.7 1.0832 0.9436 0.8395 V0.7653 0.7120 0.9360 
.8 1.0594 0.9175 0.8196 0.7519 0.7043 0.9110 
9 1.0346 0.8972 0.805.7 0.7439 0.7009 0.8917 

1.0 1.0138 0.8820 0.7965 0.7398 0.7005 0.8775 
1.2 0.9824 0.8618 0.7870 0,7382 0.7044 0.8590 
i.4 0.9613 0.8514 0   7850 0.7418 0.7118 0.8499 
1.6 0.9475 0.8471 0.7871 0.7481 0.7206 0.8466 
1.8 09391 0.8465 0.7916 0.7557 0.7299 0.8469 
2.0 0.9344 0.8484 0.7976 0.7638 0.7392 0.8496 
2.5 0.9327 0.8590 0.8148 0.7844 0.7615 0.8617 
3.0 0.9388 0.8731 0.8326 0.8040 0.7817 0.8771 
3.5 0.9485 0.8880 0.8497 0.8219 0.7998 0.8931 
4 0.9597 09027 0.8658 0.8381 0.8161 0.9087 
5 0.9831 0.9303 0.8944 0.8668 0.8443 0.9378 
6 1.0058 0.9548 0.9191 0.8911 0.8679 0.9637 
7 1.0270 0.9769 0.9408 0.9121 0.8885 0.9867 
8 1.0464 0.9964 0  9600 0.9309 0.9066 1.0072 
9 1.0643 10143 0.9773 0.9477 0.9230 1.0257 

10 1.0809 1.0306 0  9929 0.9628 0.9377 1.0425 
12 1.1105 1.0592 1.0207 0.9898 0.9641 1.0725 
14 1.1363 1.0843 1.0449 1.0133 0.9871 1  0984 
16 1.1595 1.1064 1.0662 1.0342 1.0076 1.1216 
IS 1     l on i 1        1 1i  A i     rx r% r n i       A m •*.» , 

* •    A UV J. * .   1LU1 A . UOJ1 i ,U3H) l  02b 2 1.1422 
30 1.1991 1.1448 1.1033 1.0704 1.0432 1.1611 
25 1.2406 1.1847 1.1423 1.1085 1.0812 1.2027 
30 1.2758 1.2187 1.1757 1.1416 1.1138 1.2382 
35 1.3066 1.2486 12052 1.1709 1.1430 1.2694 
40 1.3344 1.2757 1.2320 1.1975 1.1694 1.2974 
45 1.3595 1.3004 1.2565 1.2217 1.1937 1.3230 
50 1.3826 1.3232 1.2792 1.2444 1.2165 1.3466 
60 1.4243 1.3644 1.3202 1.2854 1.2577 1  3896 
70 1.4615 1.4015 1.3569 1.3224 1.2945 1.4280 
80 1.4951 1.4348 1.3906 1.3559 1.3282 1.4628 
90 1.5262 1.4656 1.4215 1.3S69 1.3595 1.4948 

100 1.5546 1.4942 1.4500 1.4161 1.3885 1.5248 
^oo 1.7718 1.7128 1  6699 1.6376 1.6114 1  7518 



Table   IV. Collision Integral Functions continued 

WIS-ONR-1 
19 June  1953 

35 

U* 14 

T* Z{1,   1) z(l,   3) zd.   4) zO,   5) z(3,   3) 

» 0 1. 1870 1.0551 0.9672 0.9027 0.8572 1.1178 
.1 1. 1727 1.0382 0.9481 0.8814 0.8287 1.0987 
.2 1. 1575 1.0146 0.9115 0.8281 0.7571 1.0729 
.3 1.1Z86 0.9684 0.8497 0.7566 0.6836 1.0308 
,4 1.0914 0.9191 0.7963 0.7069 0.6420 0.9891 
.5 1.0542 0.8776 0.7585 0.6773 0.6214 0.9524 
.6 1.0208 0.8455 0.7336 0.6608 0.6121 0.9218 
.7 0.9924 0.8217 0.7176 0.6521 0.6091 0.8974 
.8 0.9688 0.8042 0.7076 0,6483 0.6096 0.8781 
.9 0.9495 0.7917 0.7018 0.6476 0.6121 0.8633 

1.0 0.9337 0.7827 0.6989 0.6488 0.6157 0.8519 
1.2 0.9106 0.7724 0.6984 0.6542 0.6246 0.8373 
1.4 0.8956 0.7686 0.7019 0.6617 0.6342 0.8300 

. 1.6 0.8863 0.7687 0.7074 0.6700 0.6440 0.8273 
1.8 0.8808 0.7710 0.7139 0.6784 0.6534 0.8277 
2.0 0.8780 0.7747 0.7208 0.6868 0.6625 0.8300 

* 2.5 0.8784 0.7871 0.7385 0.7068 0.6836 0.8406 
3.0 0.8843 0. 8011 0.7557 0.7252 0.7022 0.8545 
3,5 0.8928 0.8152 0.7716 0.7416 0.7188 0.8692 
4 0.9025 0.8288 0.7863 0.7565 0.7335 0.8840 
5 0.9228 0.8539 0.8125 0.7824 0.7587 0.9121 
6 0.9426 0.8764 0.8349 0.8042 0.7796 0.9376 
7 0.9612 0.8962 0.8543 0.8229 0.7974 0.9605 
8 0.9784 0.9140 0.8715 0.8391 0.8129 0.9812 

' 9 0.9944 0.9300 0.8867 0.8536 0.8266 0.9999 
1.0092 0.9445 0.900 5 0.8666 0.8390 1.0169 

• 

12 1.0358 0.9701 0.9245 0.8893 0.8606 1.0468 
14 1.0588 0.9918 0.9450 0.9086 0   8792 1.0726 
U 1.0794 1.0110 0. 9*>29 0.9255 l    no c •» 

18 1.0978 1.0280 0.9789 0   9408 0.9101 1. 1157 
20 1.1143 1.0436 0.9931 0.9546 0.9235 1.1339 
25 1. 1501 1.0766 1.0244 0.9844 0.9526 1. 1737 
30 1.1802 1. 1044 1.0507 1.0097 0.9772 1.2070 
35 1.2060 1.1281 1.0736 1.0320 0.9992 1.2359 
40 1.22S6 1.1494 1.0940 1.0520 1. 0191 1.2615 
45 1.2491 1.1685 1. 1125 1.0703 1.0372 1.2848 
50 1.2678 1. 1862 1.1296 1.0871 1.0538 1.3063 
60 1.3008 1.2176 1.1604 1.1179 1.0844 1.3446 
70 1.3297 1.2^55 1.1877 1.1450 1. 1115 1.3789 
80 L.3555 1.7.708 1.2125 1.1699 1.1363 1.4095 
90 L3789 1.2938 1.2354 1. 1926 1.1595 1.4377 

100 1.4009 1.3150 1.2568 1.2141 1. 1809 1.4637 
260 1,5626 1.4758 1   4185 1.3768 1.3452 1.6611 



Table   IV. Collision Integral Functions continued 

WIS-ONR- 1 
19 June 1953 

36 

<x= 14 

T* Z(2.  2) Z<2,  3) Z(2.  4) Z<2,   5) z(2,  6) ~f4.  4\ 

0 i.1947 1.0951 1.0221 0.9706 0.9193 1.0927 
. 1 1.2017 1.1027 1.0301 0.9742 0.9296 1.0990 
.2 1.2090 1.1128 1.0416 0.9831 0.9309 1.1098 
.3 1.2109 1. 1046 1.0168 0.9391 0.8695 1.0965 
.4 i.1947 1.0716 0.9690 0.8825 0.8109 1.0607 
.5 1.1670 1.0317 0.9235 0.8382 0.7718 1.0206 
.6 1.1359 0.9948 0.8878 0.8076 0.7431 0.9846 
.7 1.1060 , 0.9641 0.8615 0.7877 0.7346 0.9549 
.8 1.0794' 0.9397 0.8428 0.7754 0.7277 0.9315 
.9 1.0564 0.9209 0.8300 0.7682 0.7249 0.9135 

1.0 1.0370 0.9066 0.8215 0.7647 0.7250 0.9001 
1.2 1.0078 0.8882 0.8132 0.7641 0.7299 0.8829 
1.4 0.9885 0.8790 0.8122 0.7686 0.7380 0.8746 
1.6 0.9761 0.8756 0.8151 0.7756 0.7476 0.8720 
1.8 0.9688 0.8759 0.8205 0.7840 0.7580 0.8731 
2.0 0.9649 0.8785 0.8271 0.7930 0.7683 0.8764 
2.5 0.9651 0.8910 0.8464 0.8162 0.7937 0.8905 
3.0 0.9729 0.9069 0.8666 0.3385 0.8172 0.9081 

- 3.5 0.9844 0.9239 0.8862 0.8594 0.8384 0.9267 
4 0.9973 0.9409 0.9048 0.8785 0.8575 0.9449 
5 1.0244 .0.9729 0.9384 0.fl21 0.8908 0.9790 
6 1.0507 1.0015 0.9675 0.9408 0.9188 1.0092 
1 1.0735 1.0274 0.9882 0.9656 0.9428 1  0361 
8 10982 1.0504 1.0154 0.9875 0.9639 1.0600 
9 1.1192 1.0712 1.035T 1.0068 ,0.9827 1.0816 

10 1.1365 1.0902 1.0539 1.0244 0.9994 1.1013 
%z 1. 1731 1.1237 1.0859 1.0554 1.0293 1.1359 

;  M 1.2034 1.1526 1.1136 1.0818 1.0550 1.1656 
16 1.2302 1.1781 1.1379 1.1051 1.0777 1.1917 
18 1.2540 1.200? 1.1596 1.1261 1.0980 
20 1.2758 1.2213 1.1792 1.1452 1.1168 1.2364 
25 1.3229 I.2659 1.2222 1.1868 1.1576 1.2826 
30 1.3622 1.3034 1.2583 1.2222 1.1925 1.3217 
35 1.3963 1.3363 1.2902 1.2535 1.2231 1.3559 
40 1.4266 1.3653 1.3185 1.2816 1.2510 1.3863 
45 1.4543 1.3917 1.3445 1.3070 1.2766 1.4141 
50 1.4793 1.4161 1.3684 1.3308 1.2999 1.4396 
60 1.5239 1.4596 1.4115 1.3735 1.3427 1.4856 
70 1.5636 1.4983 1.4497 1.4118 1.3806 1.5263 
SO 1.5990 1.5332 1.4846 1.4463 1.4156 1.5633 
90 1.6314 1.5656 1.5165 1.4782 1.4474 1.5972 

100 1.6612 1.5950 1.5461 1.5079 1.4771 1.6289 
200 1.8858 1.8198 1.7713 1.7344 1.7043 1.8674 



Table   IV. Collision Integral Functions  continued 

WIS-ONR-1 
19 June 1953 

37 

<X= 15 

T* zU. i) ZU.   2) zU. 3> Z(i.  4) Zd.   5) Z<3'   3> 

0 1.1870 1.0551 0.9672 0.9027 0.8572 1.1178 
.1 1. 1722 1.0378 0.9477 0.S810 0.8285 1.1007 
.2 1.1577 1.0163 0.9153 0.8343 0.7655 1.0765 
.3 1.1320 0.9750 0.8594 0.7687 0.6970 1.0392 
.4 1.0984 0.9300 0.8099 0.7221 0.6579 1.0012 
.5 1.0645 0.8916 0.7747 0.6944 0.6388 0.9672 
.6 1.0337 0.8618 0.7514 0.6792 0.6306 0.9387 
.7 1.0075 0.8397 0.7367 0.6715 0.6285 0.9158 
.8 0.9857 0.8235 0.7278 0.6687 0,6299 0.8978 
9 0.9678 0.8121 0.7230 0.6687 0.6333 0.8840 

1.0 0.9533 0.8040 0.7208 0.6707 0.6378 0.8735 
1.2 0.9323 0.7954 0.7218 0.6777 0.6484 0.8605 
1.4 0.9191 0.7931 0.7266 0.6867 0.6596 0.8548 
1.6 0.9112 0.7944 0.7335 0.6964 0.6708 0.8535 
1.8 0.9070 0.7979 0.7412 0.7063 0.6817 0.8554 
2.0 0.9054 0.8028 0.7494 0.7159 0.6921 0.8593 
2.5 0.9083 0.8179 0.7699 0.7389 0.7160 0.8734 
3.0 0.9167 0.8344 0.7896 0.7597 0.7372 0.890 3 
3.5 0.9273 0.8507 0.8078 0.7783 0.7558 0.9077 
4 0.9389 0.8662 0.8245 0.7953 0.7725 0.9245 
5 0.9627 0.8951 0.8541 0.8245 0.8012 0.9558 
6 0.9856 0.9203 0.8796 0.8494 0.8250 0.9836 
7 1.0069 0.9430 0.9017 0.8708 0.8458 1.0086 
8 1.0268 0.9632 0.9214 0.8895 0.8638 1.0308 
9 1.0449 0.9816 0.9390 0.9063 0.8800 1.0514 

10 1.0619 0.9981 0.9549 0.9216 0.8946 1.0699 
12 1.0922 1.0277 0.9829 0.9483 0.9205 1.1032 
14 1.1188 1.0530 1.0070 0.9715 0.9428 1.1321 
16 1.1426 1.0756 1.0284 0.9921 0.9628 1.1579 
18 1. 104U 1.0957 1.0475 1.0104 0.9805 1.1812 
20 1. 1834 1.1140 1.0648 1.0273 0.9970 1.2026 
25 1.2257 1.1537 1. 1029 1.0642 1.0333 1.2494 
30 1.2614 1.1872 1.1353 1.0957 1.0642 1.2897 
35 1.2923 1.2167 1.1637 1.1234 1.0920 1.3254 
40 1.3199 1.2429 1.1890 1.1486 1.1169 1.3574 
45 1.3446 1.2666 1.2123 1.1718 1. 1397 1.3869 
50 1.3675 1.2886 1.2339 1. 1929 1.1609 1.4141 
60 1.4083 1.3280 1.2726 1.2316 1.1996 1.4631 
70 1.4443 1.3630 1.3073 1.2660 1.2340 1.5072 
80 1.4766 1.3945 1.3389 1.2974 1.2654 1.5471 
90 1.5059 1.4235 1.3675 1.3267 1.2946 1.5837 

100 1.5331 1.4505 1.3945 1.3534 1.3217 1.6180 
200 1.7372 1.6533 1.599 1 1.5596 1.5291 1.8773 



Table    IV. Collision Integral Functions continued 

WIS-ONR- 1 
19 June 1953 

38 

OC = 15 

T* z(2,   2) ZU,  3) z(2,  4) z<2.   5) 

 ,  

z(2,   6) z(4.  4) 

0 1. 1947 1 0951 1.0221 0.9706 0.9193 1.0927 
. 1 1.2016 1. 1025 1.0306 0.9736 0.9290 1   1061 
.2 1.2081 1   1114 1.0403 0.9828 0.9325 1.1150 
.3 1.2107 1, 1061 1  0211 0.9465 0.8796 
.4 1. 1978 1.0783 0.9791 0.8952 0.8252 1.070 5 
.5 1.1739 1  0426 0  9374 0.8536 0.7879 1.0333 
.6 1.1462 1.0088 0.9039 0.8247 0.7654 0,9996 
.7 1. 1191 0.9803 0.8791 0   80 60 0.7529 0.9718 
.8 1.0945 0.9575 0.8617 0.7946 0,7470 0.9499 
.9 1.0734 0.9400 0.8498 0.7883 0.7454 0.9331 

1.0 1.0555 0,9268 0.8423 0.7858 0.7466 0.9209 
1.2 1.0285 0.9102 0.8359 0.7872 0.7535 0.9057 
1.4 1.0110 0  90 27 0.8365 0.7936 0.7637 0.8992 
1.6 1.0003 0.9009 0.8412 0.8024 0.7751 0.8982 
1.8 0.9944 0.9027 0   8481 0.8124 0.7868 0.9007 
2.0 0.9920 0.9067 0-8562 0.8227 0.7986 0.9054 
2.5 0,9953 0.9223 0.8786 0.8488 0   8266 0.9222 
3.0 1.0059 0.9409 0.9013 0  8734 0.8521 0.9419 
3.5 1.0196 0.9602 0.9229 0.8960 0   8750 0.9622 
4 1.0345 0.9790 0.9431 09169 0.8958 0.9819 
5 1.0651 1.0139 0,9796 0  9533 0.9318 1.0187 
6 1.0943 1,0452 1.0111 0,9844 0.9623 1.0514 
7 1.1213 1.0733 1.0389 1.0115 09887 1.0805 
8 1.1462 1.0985 1.0634 1.0356 1.0121 i.1064 
9 1.1691 1.1212 1.0856 1.0570 1.0332 1.1300 

10 1.1904 1   1421 1. 1059 1  0766 1.0523 1.1515 
12 1.2283 1. 1791 1.1416 1. 1115 1.0860 1. 1895 
14 1.2616 1   2111 1.1727 1.1416 1,1154 1   2225 1 u 1291! 1.2397 1. 200 2 1.1683 1.1417 1.2518 
18 1.3179 1.2655 1.2250 1. 1925 1.1656 1.2781 
20 1.3423 1.2887 1.2477 1.2148 1   1873 1.3020 
25 1.3954 1.3399 1.2975 1   2634 1.2353 1.3544 
30 

1 
1.4406 1.3835 1.3400 1.3054 1.2768 1.3992 

35 1.4802 1.4219 1   3775 1,3425 1.3138 1.4382 
40 1.5152 1.4561 1.4114 1   3759 1.3471 1.4737 
45 1.5474 1.4874 1.4424 1.4067 1.3776 1.5057 
SO 1.5769 1.5163 1.4710 1   4352 1.4060 1.5353 
60 1,6298 1.5684 1.5225 1.4865 1.4575 1.5889 
70 1.6768 1.6150 1,5687 1   5326 1.5034 1.6365 
30 1.7190 1.6569 1.610 7 15747 1.5453 i .  O If ( 
90 1.7580 1   6952 1.6491 1.6132 1.5841 1.7194 

.100 1.7938 I   7312 1.6850 1.6489 1.6200 1.7562 
zoo 2,0647 

1 
2.0026 1  9572 1.9227 1.8945 2.0351 

i 



WIS-ONR-i 
Table   V.     Functions for calculating the higher approximations to      19 June  1953 

the transport coefficients 39 

The function   f r ' 

T* a = 12 a. =  13 «= 14 <x = 15 

0 1.0017 1   0017 1.0017 1.0017 
. 1 1.0019 1   0018 1.0018 1.0018 
.2 1.0017 1.0021 1.0021 1.0020 
.3 1.0012 1.0014 1   0015 1.0016 
.4 1.0003 1  000 5 1.0006 1.0008 
.5 1.0001 1.0001 1.0002 1.0003 
.6 1.0001 1.0000 1   0000 1.0001 
.7 1.0002 1.0001 1.0000 1.0000 
,8 1.0002 1.0001 1.0000 1.0000 
.9 1.0002 1.0001 1.0000 1.0000 

1.0 1.0001 1.0001 1.0000 1.0000 
1.2 1.0001 1.000 1 1.0C01 1.0001 
1.4 1.0001 1,000 2 1   0002 1.0003 
1.6 1.0003 1.0004 1.0005 1.0007 
1.8 1.0005 1.0007 1.0008 1.0010 
2,0 1.0008 1.0011 1.0012 1.0015 
2.5 1.0017 1.0020 1.0022 1.0026 
3.0 1.0025 1.0029 1.0031 1.0035 

*   3.5 1.0032 1.0036 1.0039 1,0043 
4 1.0037 1.0042 1.0046 1.0050 
5 1.0045 1.0050 1.0055 1.0058 
6 i  0050 1.0055 1.0061 1.0064 
7 1.0052 1.0058 1.0066 1  0067 
8 1.0054 1.0060 1.0067 1.0070 
9 1.0055 1.0061 1.0068 1.0071 

10 1.0056 1  0062 1.0069 1.0072 
12 1  0057 1.0062 1.0069 1.0073 
14 1.0057 1.0063 1.0069 1.0073 
16 1.0057 1.0063 1.0069 1.0073 
lg 1     rtAKV i    r\t\L A i     r\r\ Ln 1       t\t\ *J O * » *r*» •# • *   ,   W \J~X A , v/v w 7 J. . \J\J t J 

20 1.0057 1.0064 1.0068 1.0073 
25 10057 1.0064 1.0068 1.0073 
30 1.0057 1.0065 1.0068 1.0074 
35 1.0057 1.0065 1.0068 1.0074 
40 1.0058 1.0066 1.0068 1.0075 
45 1   0058 1.0067 1.0068 1.0075 
50 1,0059 1.0068 1.0068 1.0075 
60 1.0060 1.0069 1.0069 1.0077 
70 1.0061 1.0071 1.0070 1.0078 
80 1 0062 1.0072 1.0071 1.0079 
90 1,0063 1, 0073 1   0072 1.0080 

100 1.0064 1   0074 1.0073 1.0082 
200 1.00 74 1. 0084 1,0081 1.0091 



Table  V. Functions for calculating the higher approximations to 

the transport coefficients,  continued 

WIS-ONR-i 
19 June  1953 

40 

The tunction   f;  ' 

T* = 12 =  13 = 14 = 15 

0 1.0027 1.0027 1.0027 1  0027 
. 1 1  0029 1.0028 1.0029 1.0028 
.2 1.0027 1.0032 1.0033 1.0032 
.3 1.0020 1.00 23 1.0025 1.0026 
.4 1.0006 1.0009 1.0011 1.0013 
.5 1.0002 1.0002 1.0003 1.0005 
.6 1.0002 1.0001 1.0001 1.0001 
.7 1.0003 1.0001 1.0000 1.0000 
.8 1.0003 1.0001 1.0000 1.0000 
.9 1.0003 1.0001 1.0000 1.0000 

1.0 1.0002 1.0001 1.0000 1.0000 
1.2 1.0002 1.0001 1.0001 1.0002 
1.4 1.0002 1.0003 1.0004 1.0005 
1.6 1.0004 1.0006 1.0008 1.0010 
1.8 1.0008 1.0011 1.0013 1.0016 
2.0 1.0013 1.0016 1.0019 1.0022 
2.5 1.0026 1  0031 1.0034 1.0039 
3.0 1.0038 1.0045 1.0048 1.0054 
3.5 1.0049 1.0056 1.0060 1.0067 
4 1.0058 1.0065 1.0071 1.0077 
5 1.0070 1.0078 1.0085 1.0091 
6 1.0077 1.0085 1.0094 1.0099 
7 1.0081 1.0090 1.0105 1.010 5 
8 1.0085 1.0093 1.0104 1.0109 
9 1.0087 1.0095 1.0106 1.0111 

10 1.0088 1  0097 1.0107 1.0112 
12 1.0089 1.0098 1.0109 1.0114 
14 1.0089 1.0099 1.0108 1.0114 
16 1.0089 1.0099 1.0108 1.0115 

1.G088 1.0100 1.0108 1.0115 
20 1.0089 1.0100 1.0107 1.0114 
25 1.0089 1.0101 1.0106 1.0115 
30 1.0089 1.0101 1.0106 1.0115 
35 1.0090 1,0102 1.0106 1.0116 
40 1  0090 1.0103 i.0106 1.0116 
45 1.0091 1.0104 1.0106 1.0117 
50 1.0092 1.0105 1.0107 1.0118 
60 1.0093 1.0108 1.0108 1.0120 
70 1.0096 1.0111 1.0109 1.0122 
80 1.0097 1   0112 10110 1. 0124 
90 1.0099 1   0114 1.0113 1.0125 

100 1.0101 1.0116 1.0114 1.0127 
200 1.0115 1.0132 1   0127 1,0141 



Table   V. Functions fo r calculating the higher approximations to 

the transport coefficients,   continued 

The function   JL.'   ' 

- T* = 12 = 13 = 14 = 15 

' 0 1.0020 1.0020 1.0020 1.0020 
. 1 1.0017 1.0017 1.0018 1.0018 
.2 1.0010 1.0012 1.0013 1.0014 
.3 1.0002 1.0004 1.0005 1.0006 
.4 1.0001 1.0001 1.0001 1.0002 
.5 1.0002 1.0001 1.0000 1.0000 

1 .6 1.0003 1.0001 1.0000 1.0000 
.7 1.0003 1.0001 1.0000 1.0000 
.8 1.0002 1.0001 1.0000 1.0000 

. .9 1.0002 1.0001 1.0000 1.0000 
1.0 1.0001 1.0000 1.0000 1.0001 
1.2 1.0001 1.000 1 1.0002 1.0003 

- 1.4 1.0001 1.0003 1.0004 1.0006 
1.6 1.0003 1.0005 1.0007 1.0009 
1.8 1.0006 1.0008 1.0011 1.0013 

i 2.0 1.0Q09 1.0012 1.0015 1.0017 
- 2.5 1.0017 1.0020 1.0024 1.0028 

3.0 1.0024 1.0028 1.0032 1.0037 
3.5 1.0030 1.0035 1.0039 1.0044 
4 1.0035 1.0041 1.0045 1.0050 
5 1.0042 1.0049 1.0053 1.0059 
6 1.0047 1.0053 1.0059 1.0064 
7 1.0049 1.0057 1.0062 1.0068 
8 1.0051 1.0059 1.0065 1.0070 
9 1.0052 1.0060 1.0066 1.0072 

10 1.0053 1.0061 1.0067 1.0073 
12 1.0053 1.0061 1.0068 1.0074 

i 14 1.0053 1.0062 1.0069 1.C075 
16 1.0052 1.0061 1.0068 1.0075 
IS 1.0052 1.0061 1.0068 1.0075 
20 1.0051 1.0060 1.0068 1.0075 
25 1.0050 1.0059 1.0068 1.0075 

* 30 1.0049 1.0058 1.0067 1.0075 
•     35 1.0048 1.0058 1.0066 1.0075 

'40 1.0048 1.0058 1.0067 1.0075 
! 45 1.0047 1.0058 1.0066 1.0075 

50 1.0047 1.0058 1.0067 1.0076 
i 60 1.0047 1.0058 1.0067 1.0077 , 70 1.0047 1.0058 1.0068 1.0077 

80 1.0047 1.0059 1.0069 1.0078 
90 1.0047 1.0059 1.0070 1.0079 

100 1.0048 1.0060 1.0070 1.0081 
200 1.0053 1.0067 1.0077 1.0088 

WIS-ONR-i 
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Table VI.        The reduced thermal diffusion ratio,    L k~     J , 

T* 

0 
. 1 
. 2 
, 3 
.4 

5 
.6 
.7 
.8 
.9 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 
200 

for calculating isotopic thermal diffusion, 

M,   -M: 

M   *M, 
l ...   ±Wk „ 

T       T M    4- M '1 

oc-12 

0 
0. 
0 
0 

, 3133 
2844 

.2047 

.0738 
-0.0271 
-0.0829 
-0. 1038 
-0. 1031 
-0.0902 
-0.0690 
-0.0456 
0.0071 
0.0580 

1050 
1476 
1841 
2570 

0.3103 
0.3469 

3744 
4111 
4312 

0.4414 
0.4494 
0.4531 
0.4536 
0.4536 

4512 
4469 

0.4441 
0.4387 
0.4321 
0.4245 
0.4188 
0.4161 
0.4118 
0,4093 
0.4051 
0.4048 
0.4034 
0  4022 
0. 40 24 
0   4110 

0 
0 
0 
0 

0 
0 
0 

0 
0 

c^-13 

0 
0. 
0 

3133 
2865 
2264 
1110 
0157 
0 389 

0.0616 
0.0623 
0.0 509 
0.0317 
0.0088 
0.0419 
0.0923 

1386 
1797 
2161 

0.2883 
0.3404 
0.3786 
0.4060 
0.4437 
0.4643 
0.4778 
0.4358 
0.4889 
0.4911 
0 4917 
0.4919 
0.4887 
0.4866 
0.4826 
0.4764 
0.4713 
0.4681 
0.4648 
0 4641 
0.4616 
0.4598 
0 4590 
0.4583 
0.4584 
0.4586 
0.4703 

a.-14 

0.3133 
0.2887 
0. 2401 
0. 1369 
0.0484 

•0.0037 
-0.0256 
-0.0270 
-0.0162 
0.0023 
0.0244 
0.0734 
0.1226 
0.1680 
0.2083 
0.2438 
0.3145 
0.3658 
0.4035 
0.4313 
0.4679 
0.4911 

5044 
5131 
5181 
5208 
5233 

0.5225 
0.5209 

5187 
5190 
5140 
5106 
5066 
5058 
50 38 

0. 5035 
0.5032 
0.5044 
0.5071 
0. 5093 
0,5095 
0.5277 

0 
0 
0, 
0. 
0 

0. 
0. 
a 
o 
o 
o 
o. 

a = 15 

0. 
0 
0 
0, 

0.3133 
0.2887 
0.2468 
0.1545 
0.0727 
0.0229 
0.0020 

0005 
010 5 
0287 
0498 

0.0981 
0.1466 
0. 1911 
0 2310 
0.2665 
0.3380 
0.3890 
0.4270 

4544 
4931 
5134 
5283 
5358 

0.5427 
0.5446 
0.5494 
0.5495 
0.5496 

5485 
5479 

0.5452 
0.5427 
0.5429 
0 5426 
0.5426 
0 5429 

5443 
5460 
5474 
5505 
5534 

0 
0 
0 
0 
0. 

0 
0 

0 
0 
0 
0. 
0, 
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Table VII.       Functions for calculating the transport properties 

of mivture s 

WIS-ONR-1 
19 June 1953 

43 

The function   A 

- T* 
1 

u = 12 
i 

oC = 13 oi = 14 <*= 15 

* 0 1.0065 1.0065 1.0065 1.0065 
. 1 10060 1  0146 1.0247 1.0251 

1.0374 1   0 374 1.0445 1.0435 
3 1   0731 1.0693 1   0 729 1  0695 

.4 1.0976 1,0932 1.0946 1  0905 

.5 1. 1108 I. 1067 1.1070 1. 1028 

.6 1.1170 1.1131 1.1128 1. 1088 

.7 1.1193 1.1154 1   1145 1. 1108 

.8 1.1194 1.1154 1.1142 1. 1104 
9 1.1185 1   1143 1   1126 1. 1091 

1,0 1.1173 1.1126 1   1106 1. 1071 
1-2 1.1146 1   1096 1,1067 1. 1032 
1.4 1.1126 1.1070 1. 1037 1. 1000 

. 1.6 1.1114 1. 1052 1. 1013 1.0978 
1.8 1.1111 1. 1044 1.0999 1.0964 
2.0 1.1111 1. 1044 1.0990 1  0956 

b 2,5 1.1130 1   1056 1,0987 1.0958 
3 0 1.1161 1   1081 1. 1002 1.0973 
3.5 1.1193 1.1113 1. 1026 1.0995 
4 1. 1226 1   1141 1   1050 1   1018 
5 1. 1284 1. U94 1   1101 1.1064 
6 1.1335 1   1238 1.1147 1. 1103 
7 1.1377 1.1277 1.1189 1.1136 
8 1.1417 1   1309 1   1224 1   1163 
9 1   1449 1   1336 1.1255 1,1189 

10 1.1477 1   1341 1   1281 1.1210 
I 

12 1   1532 1   1406 1   1326 1   1246 
14 1.1583 1   1447 1   1366 1   1276 
16 1.1625 1   1485 1   1397 1   1300 
IS 1.1665 1.1517 1   1423 1,1322 
20 1. 1702 1   1548 1   1449 1.1343 
25 1   1790 1   1623 1   150 2 1,1385 

. 30 1-1865 1. 1691 1   1542 1.1421 
35 1   1938 1   1752 1   1578 1   1454 
40 1   2005 i   1813 1. 1612 1.1480 
45 12067 1   1867 1   1643 1.1508 
50 1.2123 1   1917 1   1668 1.1531 
60 1   2230 1   2008 1   1715 1   1573 

: 70 1   2726 1   209 2 1   1759 1.1610 
80 1   2416 1   2168 1   1796 1   1642 
90 1   2492 1   2240 1   1831 1   1674 

100 1   2569 1   2300 1   1858 1   1700 
200 

1 
1. 3103 1.2754 i. 2068 1. 1885 



Table   VII.     Functions for calculating +.he transport properties 

of mixtures,   continued. 

WLS-ONR-1 
19 June 1953 

44 

The iunction.   r> 

T* <X = 12 DC =  13 <L= 14 <*= 15 

0 1.1851 1. 1851 1. 1851 1. 1851 
. 1 1. 1988 1. 1955 1. 1926 1. 1928 
.2 1.2528 1. 2407 1.2328 1.2268 
.3 1.3028 1.2895 1,2788 l'. 2698 
.4 1.3127 1.3019 1.2922 1. 2840 
.5 1.3003 1.2922 1.2844 1.2768 
.6 1.2808 1.2737 1.2668 1.2609 
.7 1.2601 1.2539 1.2476 1. 2424 
.8 1.2403 1.2346 1.2289 1.2238 
.9 1.2239 1.2172 1.2125 1.2074 

1.0 1.2079 1.2025 1. 1973 1.1930 
1.2 1. 1837 1.1780 1.1733 1.1689 

. 1.4 1.1662 1.1612 1.1561 1.1523 
1.6 1.1536 1.1490 1. 1440 1. 1392 
1.8 1.1458 1. 1394 1. 1347 1. 1298 
2.0 1.1387 1.1324 1.1279 1.1226 
2.5 1.1288 1.1222 1.1174 1. 1119 
3.0 1.1250 1.1167 1. 1113 1. 1057 
3.5 1.1217 1.1136 1. 1084 1. 1024 
4 1.1211 1. 1128 1. 1067 1. 1002 
5 1.1225 1.1126 1. 1048 1. 1001 
6 1.1242 1.1131 1. 1059 *       {>> *S r\ rt 

l .U707 

7 1.1252 1.1155 1. 1067 I. 1006 
8 1.1278 1.1176 1.1079 i. 1009 
9 1.1298 1.1185 1. 1094 1. 1025 

10 1.1317 1. 1203 1. 1103 1. 1026 
12 1.1351 1.1225 1.1127 1. 1050 
14 1.1376 1.1247 1.1135 1. 1056 
16 1.1384 1.1259 1.1149 1. 1066 
18 1. 1405 1.1271 1.1153 1. 1070 
20 1.1404 1.1274 1.1178 1. 1077 
25 1. 1426 1. 1282 1.1176 1. 1070 
30 1. 1426 1.1281 1.1178 1. 1058 
35 1. 1427 1.1279 1.1162 1. 1055 
40 1. 1427 1.1268 1.1159 1. 1050 
45 1.1418 1.1270 1.1148 1. 1035 
50 1. 1407 1.1255 1.1142 1. 1023 
60 1.1388 1.1236 1.1119 1. 1003 
70 1.1378 1.1218 I. 1106 1.0980 
80 1.1365 1.1198 1. 1096 1.0950 
90 1.1350 1.1180 1. 1077 1.0940 

100 1.1331 1.1154 1.1049 1.0922 
200 1. 1206 1. 1021 1.0911 1.0 779 



Table VU.     Functions for calculating the transport properties 

of mixtures,    continued. 

WIS-ONE-1 
19 June 1953 

45 

The function   C* 

T* «s 12 
i 

«; = 13 c* = 14 OL= 15 

0 0.8889 0.8889 0.8839 0.8889 
.1 0,8835 0.8844 0.8853 0.8853 
2 0.869? 0.8736 0.8765 0.8779 
3 0.8463 0.8531 0.8581 0.8613 
4 0.6279 0.6360 0.8421 0.8467 
5 0.8172 0.8257 0.8325 6.8376 

.6 0.8128 0.8212 0.8283 6.833? 
7 0.6127 0.8209 0.8280 0.8334 

.8 0.8151 6.8231 0,8301 0.8354 
9 0.8193 0.8269 0.8338 0.8391 

i   1 0 0.8240 6.8315 0.8383 6.8434 
•\1 2 0.8348 0.8419 0.8482 6,8532 

1 4 0.8453 0.8521 0.8582 6.8629 
1 .6 0.8549 6.8615 0.8673 8.3713 
1 .8 0.8636 6.8698 0.8753 0.8797 
2 .0 0.8709 6.8771 0.8823 6.8867 
2 .5 0.8855 6.8913 0.8961 6.9605 
3 0 0.6959 6.9614 0.9059 0.9102 
3 .5 0.9031 6.9688 0.9131 0.9174 
4 0.9084 6.9141 0.9183 0.9226 
5 0.9155 6.9213 0.9253 0.9293 
6 0.9195 6.9254 0.9298 0.9337 
7 0.9216 6.9280 0.9324 0.9365 
8 0.9232 6.9295 0.9342 0.9381 
9 0.9241 6.9362 0.9352 0.9394 

10 6.9242 6.9367 0.9359 6.9399 
12 0.9245 0.9311 0.9366 6.9409 
14 0.9243 0.9313 0,9367 6.9412 
\k A ai\i n   a i: ii n    niL l A    r>A\ A 

m m * ••* m * •-•   1    /  a»W v w. /•**•• 

18 0.9234 0.9367 0.9364 0.9413 
28 0,9226 6,9362 0.9366 6.9414 
25 0.9218 0.9295 0.9361 6.9413 
30 0.9209 6.9291 0.9358 6.9412 
35 0.9283 6.9289 0.9354 6.9415 
40 0.9202 0.9288 0.9355 6.9417 
45 0.9198 0.9290 6.9355 6.9426 
50 0.9197 0.9290 0.9356 6.9423 
40 0.9196 0.9293 0.9360 6.9430 
79 0.9202 0.9298 0.9367 6.9437 
80 0.9205 0.9303 0.9375 0.9444 
96 0.9206 0.9309 0.93S3 6.9453 

108 0.9214 0.9316 0.9387 6.9461 
200 0.9271 0.9377 0.9445 6.9520 
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Table VIIJA-    Temperature indexes for viscosity*  thermal conductivity, 
46 

and self-diffusion 

T* M 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
2 
4 
6 

1.8 
2.0 
2.5 
3.0 
3.5 
4 
5 
D 

7 
8 
9 

10 
12 
14 
16 
18 
20 
25 
30 
35 
40 
45 
50 
60 
70 

: 80 
; 90 
100 
200 

Index for  r\    and   A 

12 

0.833 
0.827 
0 832 
0,874 
0,950 
1 007 
1.040 
1.056 
1.058 
1.052 
1.040 
1.009 
0.974 
0.941 
0.911 
0. 884 
0.832 
0.796 
0.770 

753 
730 

0.717 
0. 710 
0 706 

703 
701 

0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.699 
0.698 
0.697 
0.696 
0.694 
0.692 
0.687 
0.685 
0.682 
0.679 
0, 657 

0. 
0. 

0. 
0. 

14 

OJ 

21 

15 

Index for „D» 
11 

12 

833 
830 
820 
846 
399 
947 
979 
996 

1.001 
0.997 

988 
960 
928 
897 
869 
844 
793 

0.758 
0.733 

715 
692 
679 
671 
666 
664 
662 
660 
660 
659 

0.659 
0.660 

659 
659 
658 
656 

0.655 
0.654 

651 
647 
645 
643 
640 
620 

0, 
0. 
0. 
0 
0 
0 
0, 
0 
0 
0. 

0 
0. 
0 
0. 

0. 
0 
0 
0 
0 
0 

0 .833 
0.850 
0.891 
jo.94i- 
;i.oi6 
1.049 
1.062 
1.062 
1.055 
1 042 
1.0 28 
0.996 
0.964 
0.935 
0 9Q9: 

0. 887 
0. 844 
0.812 
0. 791 
0.775 
0.753 
0. 742 
0. 735 
0 730 
0.728 
0.727 
0.727 
0.727 
0,729 
0.730 
0.732 
0 735 
0.737 
0.739 
0 740 
0.741 
0 741 
0.741 
0 739 
0 739 
0 738 
0 736 
0   719 

07 833 
0. 847; 
08791 
0[.94l| 
0,-992 
1.023! 
1,-0361 

i.03l| 
1.0i9i 
1^005 
0.974 
0.944 
0.9151 
0,. 891 
0.869; 
0.826' 
0.796 
9, 774; 
6;. 758' 
0, 736 
0. 724; 
0   716| 
0.'. 711 j 
0r 709! 
0.708| 
0, 707: 
0r706i 
Q,707| 
0.708! 
0r710! 
0,711 
6. 713! 
0.713; 

."ar714J 
Q., 713; 
0.713! 
0', 712J 
0!710' 
0.709 
0.707 
0.70 5 
0.687 

14 f-3 

M2°o 
0 

is9i*o 

UjRo 

MV.o 

$e§l2o 

i#:0 
0. 724 
i - L, i r . i > 

%W. 0 

q*&±o 
%*fe 0 
%tftp. 0 

i&p. 0 oX$ 0 

<<>m 0 

^<gg.o 
O.^o 
0f!692  Q 
0, 690 :, 
0. 688 
0: 685 
0.6&4 
0. 667 

). 

0r 833 
0i. 844: 

Oi. 866~ 
0L916J 
o|. 960; 
0;. 987! 
0;. 999, 
1;. 000, 
0u9943 
0.983p 

0|. 9700 

01941^ 
0 911; 
Ol 885^ 
0J.86l8 

Ol 840" 
0L 79 9^ 
0^7690 

0, 748^ 
0^732' 
0, 711 
0. 699 
0> 690 
Oi. 686 
Qi.682 
01680 
0|. 677 
Oj. 676 
0^676 
0[676 
Oj.676 
0.676 
01676 
0,676 
0 675 
0,674 
01 673 
o[671 
Ol 669 
01 667 
0! 664 
01662 
0, 644 

I 

01 
SI 

dl 

OS 

0- 
2 £ 
Oi- 
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Oc' 

l.'.! 
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OH 
ui 
001 
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Table VIIIB.    Sutherland constants for viscosity,  thermal conductivity, 

and self-diffusion. 
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r 

C   /T •fcHH        > \ S/T   for   D 
11 

T*X* 12 13 14 15 12 13 14 15 

0 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
. 1 0.487 0.4?4 0.491 0.492 0.537 0.531 0.525 0.524 
.2 0.497 0.469 0.467 0.471 0.642 0.611 0.58S 0.578 
.3 0.598 0.558 0.541 0.528 0.856 0.788 0.742 0.713 
.4 0.819 0.739 0.701 0.664 1.067 0.969 0.900 0.852 
.5 1.028 0.922 0.865 0.810 1.215 1.096 1.010 0,950 
.6 1.176 1.059 0.988 0.921 1.281 1.157 1.063 0.996 
.7 1.251 1. 135 1.054 0.985 1.283 1.161 1.066 0.999 
.8 1.264 1.154 1.073 1.003 1.246 1.131 1.040 0.975 
.9 1.233 1.133 1.054 0.989 1.184 1.080 0.994 0.933 

1.0 1.174 1.084 1.012 0.952 1. 118 1.022 0.942 0.886 
1.2 1.036 0.965 0.904 0.852 0.983 0.902 0.836 0.787 
1.4 0.901 0.843 0.796 0.750 0.866 0.797 0.740 0.699 
1.6 0.788 0.736 0.700 0.660 0.771 0.710 0.661 0.625 
1.8 0.697 0.651 0.622 0.584 0.693 0.641 0.597 0.565 
2.0 0.623 0.583 C.558 0.524 0.632 0.584 0.545 0.515 
2.5 0.497 0.462 0.443 0.415 0.524 0.484 0.453 0.426 
3.0 0.420 0.389 0.372 0.349 0.454 0.420 0.393 0.369 
3.5 0. 370 0.343 0.326 0.304 0.410 0.376 0.353 0.329 
4 0.338 0.312 0.292 0.273 0.379 0.347 0.324 0.303 
5 0.298 0.274 0.252 0.238 0.339 0.309 0.289 0.267 
6 0.277 0.254 0.230 0.219 0.318 0.288 0.267 0.248 
7 0.266 C.242 0. 218 0.207 0.30? 0.276 0.254 0.235 
8 6.259 0.236 0.211 0.200 0.299 0.268 0.246 0.228 
9 0.255 0.231 0.207 0. 196 0. 295 0.265 0.241 0.222 

10 0.251 0.229 0.204 0. 194 0.294 0.262 0.238 0.220 
12 0.250 0.227 0.203 0. 191 0.293 0.261 0. 235 0.215 

i 14 0.250 0.224 0.203 0.191 0.294 0.260 0   234 0.214 
1 16 0.250 0.224 0.204 0. 189 0.297 0.261 0. 235 0. 214 

1 o A          *•»  <- —• 
U.  &.OU 0. 222 0.20 5 0. 189 0.299 0.262 0.235 0.214 

20 0.250 0.221 0.206 0. 189 0.302 0.265 0.235 0.214 
25 0.250 0.220 0.208 0. 189 0.306 0.268 0.237 0.214 
30 0.249 0.218 0.209 0.188 0.311 0.270 0.239 0.214 
35 0.248 0.216 0.208 0.187 0.314 0.271 0.240 0.213 
40 0.245 0.214 0.208 0. 185 0.315 0.272 0.240 0.212 
45 0.244 0.211 0.208 0.184 0.317 0.271 0.240 0.211 
50 0.241 0.208 0.206 0.182 0.317 0.271 0.239 0.209 
60 0.237 0.202 0.203 0. 177 0.318 0.269 0.237 0.206 
70 0.231 0. 197 0.200 0.173 0.315 0.267 0. 234 0.203 
80 0.227 0. 192 0. 197 0.169 0.313 0.264 0.231 o. ::oo 
90 0,222 0. 189 0. 192 0.167 0.312 0.261 | 0.227 0. 196 

100 0.218 0. 184 0.190 i  0.162 0.308 0.258 0.225 0. 193 
200 0. 186 0. 154 0. 163 0. 137 0   280 0.23C |  0. 200 0. 168 

!   I 
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T* 
Fig.   4,      A.    Temperature indexes for viscosity and thermal conductivity; 
B.     Sutherland constants for viscosity and thermal conductivity.    Solid 
lines:   Buckingham potential;   broken lines;    Lennard-Jones (12-6) potential. 
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APPENDIX I.    HIGHER APPROXIMATIONS TO THE TRANSPORT COEFFICIENTS 

The quantity   f -      appearing in Eq.  (6) is given by the series 

f *    = 1 +   t     +    Y    + (35) 

•where 

12 

bH   b« 

fe;< CbJg,b23 -bj,^ b)3 ) 
2* 'k„tli-CjyI]t!!'=yl,b1J-t„i-'«4-^»;.)   ; 

and 

bu- 4- n ca,a)* 

_    ca.a)*     ^ ca:3)* 
b., - 7(1 -SQ   ' 

12 ? 

. 43 n«,a)*   ll?0
(a<3)*   1A, 'a,*)* 

13 * ^ " +      * 

b22-.i|ia^-im
(a'3)%20AU>)* 

bM-^ a*'a)*- fa1***** f A(^X-3OA(3'5)"; 23     ^T 

D33 2iT6     iL K     iX —^ -I3SA +'^X1 */aXL   '    . 

The quantity   f %      appearing in Eq.  (7)   is given by the series 

f ,       = I +   5, +    S. + —   , (36) 
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where '' x 

u I 
12 

a   a„.   -   0- ii    5.^. ia. 

//,  'i     a       >i      'i \ • 

2   u:«i.-»*«"x*;«i«i*»<,«;«i-».>u-a;»»•»*-«•»*«)   ' 

and 

a      =b       ,     a*     = b       ,a       = b 
11        11   '12        12 13 13 

a22=  ^A "5?A + 

a23 = lTa TiL a 

^3   =   356 
irf^'-is*aw,% '^n/'  - ,3srT +^ti    +4rf 

The third approximation to the quantity f     appearing in Eq.   (8) 

is expressed in the determinant notation of Chapman and Cowling as 

f<3>   =a      4 
a) 

00— 
D 00  Jw        ' (37) 

where    j^ -   '   is a fifth order determinant -vhose general element is a^j , 

with   i   and   j    ranging from   -2 to 2.   The termjtfoo      is the minor of 

j4 obtained by deleting the row and column containing   aQQ        The 

elements   a--   are functions of the collision   integrals,   the molecular weights, 

and the  relative comer.trations of the gases in the diffusing mixture.    In general, 

a,:   -   n::  ;   dind if    i  .    j * 0        a_i_i   nas ^e  same form as a-   except that the 
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subscripts    1   and   2 ,   referring to the molecular species,   are interchanged 

in the expression for   a..  .    The   a.,   necessary for the evaluation of Eq.  (37) 

are as follows,    where   x,    and   x_   are the mole fractions,   and   M     and   M„ 
12 12 

the molecular weights of species     1   and   2 ,   respectively: 

n      =8 
M.M. 

i n 
(!,0* 

°o        (M,+ Ma) 12 

(M^MJI  l?11"    "2a, 01 

02 

t-3 
35     °',)*   21    fi,a)» c^)* 

0-1 a. 
0-2 02 

a a 
H     5 

(38) 

*„' 
&M. 

"    (M.tM,). 

4    M* *) 1 3\ II.I If S it l",-/t 3 [LWll (V)«- 

"      VM,.MJ    llr,) 
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3. 

a      r 
9M, .fl,»)# 

a 
a     CM ^M ^    I   3: (W "(liMNsHX'-SK**"^*^^' 'a"*"u       16 

-I5M   D +7MM  XI       -8M.M„& ' 

(38) 
(cout.) 

a 11 \M, + Ma J 

tcj 

7] a 

(M,Mj)
!      18       i>        2      ,s J    ' 

£ 2 

8M,8 M*        I  <r<?5 ,.<•,»*     547 ^«,a)#   5T n0,8)*'_i<r>.(',*')* 

*»-l*       (M,*M.)4 

(3,3)*- (2,3)* 
.7nlsl'   +sn/a 

a    =   Q.     +  —  fl> aa.       aa     xa    aa  J 

22. 

2Mi 

(MI+MJS 
IX 

•iM*(»o»M^i53M*)fl^-iosMjn^^M*a^}* 
if   'a' 

^M^M^M*)^*- 56M1Ma
3a^^WM1MXa>)* 

1 

L 
i    a ^(3.3)* 

J 
1 .... -.- ,ir   (%)    -J 

-   <r*\J 

$(M,Ma)a 

a-2     (M(+ M2V 

1,4)* ^0/i* 
f  1505^0,0*     jWnO>«*+ l^f^*., 05X1        ^5^,a 

„3), (a,+i#     ,„A(3'3;* 
_-n a0,35* + st.a '   -fori.   + i4Ad 
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The   a',    above are the same as those defined in connection with the thermal 

conductivity,  tuit now it is necessary to specify,  by subscripts on the 

f\   ( (/.     n)* 
LI ' ,  -which molecular interaction is under consideration; for 

example,    a        refers to an interaction between two molecule a of species    1 , 

whereas   a   T   .    refers to species    2 .    The above expression for the   a.,   were 

calculated by the method of Chapman and Cowling'3'*' . 

The expression for   f      may be considerably simplified for the 

cases of tracer diffusion and self-diffusion.    For tracer diffusion where 

x.—* 0 ,  we obtain 

£D =    !  ; (39) 
• l-A.-A,---- 

where 
3 2*1 

A ,"    _       't      * _a    __.,a    .   ..2„* 1     a., a', 30 M,  +25Mi-/2M2B +lfcM,MaA" 

x 

2    *«,*»«-  a'.a ) 

The quantities   A*,    B* ,    and   C*   are defined in Eq.   (H).    The result for 

x   —» 0   is obtained from the above by changing the signs of all subscripts on 

the   a.; , or what has the same effect,   interchanging     M     and   M- The 

_ it,") * 
expression for self-diffusion is obtained by setting   M,   = M        ,        XI 

A,        =n«      •<m,i   «'m
)12-«rm»U-«'»>22   ' 

* Reference (4),  Chapter 9. 
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The general expression for the thermal diffusion ratio given by 

Eq.  (9) involves the   a.,   defined above.    For a binary mixture of heavy 

isotopes,   the dimensionless quantity   k,^,    ,    defined in Eq.   (10) is given 

to a first approximation by 

V o-i i 
av*„*; i 

CI.D* ,_  (a,3)« 

15 (&C*-5)   (3AJ_£)_ 
1      A* (14 A*- I2B* + 5 5 ) 

(40) 

and to a second approximation by 

K)   - !^.-XaY1-X3Yj (41) 

where 

xl 

X2 

X3 

Y, 
i. 

Y2 

= 

3o-o-\ Q-"aa'5a'0-2 a.z 
a>L -a",a 

a
o-i  a'aa "Q-o-aaia 
ii         i a 

ao-A << " *o-i aia 
/         '              /2 a   CL    - a 
II     aa       ia. 

«             n c,aaa -c4aa 

c* aal - c3 aa 
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and 
45       (i,i) x-       4.5       0 a)* „ 0/3)* 

c    =   7" A -   — SI +   18 Cl 
1 ? 2 > 

Cl ,**-) * 

c, = -——- Xi         il + ——il - -Tr^i , 

'3        512 

7805   o (I»,J*       5 + 3^ n
c'>a)*       S3iq    r_ <i,3>*      535      0,-0* aa5- rvCI'S)* a    - -zr n      + — n     - -^ a      +  — xi 

ac     (a,a)* o,3)*       rt(a,i-)«-    „ r\{'i>i)* 

In the above expressions for   k_,   the   a-    are to be calculated as if 

Mi  = M? .   inasmuch as the deviations from this equality have been explicitly 

allowed for in deriving Eq.  (10) .    It is interesting to note that for rigid 

spheres    [k_j   ?   *8 8. 8 percent larger than     [kT J  ,    . 

The above expressions for the higher approximations to the 

transport coefficients were calculated by the method of Chapman and Cowling'     ', 

and their form depends on a particular approximation scheme for obtaining 

solutions to an infinite set of simultaneous equations.    The scheme used by 

Chapman and Cowling is not unique,   and indeed Kihara'3"' has developed an 

alternative scheme and from it obtained the following second approximations 

to viscosity,   ^thermal    conductivity ,    and self-diffusion,  and the first 

approximation to the thermal diffusion ratio for isotopic mixtures; 

fa-, r  ,  rv(a-3)* 

\ «M L A(2,i)*       2 (42) 



:;) 

JI 
4 XL 7 

a j xil 
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(43) 

fa) 

(44) 

w, .5      (fe C   - 5 ) 

lb A* (45) 

Klhara's expressions are considerably simpler than the corresponding 

Chapman, and   Cowling expressions,  and are known to be more accurate for 

the special case of a Lorentzian gas (a binary mixture in -which one component 

has a much smaller molecular -weight than the other,  and collisions between 

molecules of the light component need not be considered).    It is,  therefore, 

of interest to compare the expressions of Kihara and of Chapman and Cowling 

for the more realistic potential given by Eq.  (1),  and to estimate their 

relative accuracy by comparison with the still higher approximations 

evaluated in the present paper. 

IJ5)   Reference (4),  Chapter 7. 

(36) 
T.  Kihara,  Imperfect Gases (originally published in Japanese in 1949, 
and translated into English by the U. S.  Air Force),  Sees.   23,   26,   27, 
31,   32; "Virial Coefficients and Models of Molecules in Gases11, 
University of Wisconsin Report OOR-7,    June 5,   1953,  to be submitted 
to Rev. Mod. Phys.  for publication. 
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The two methods yield answers for the potential o£ Eq.   (1) which 

asre appreciably different only for the case of the thermal diffusion ratio; 

some selected values for isotopes are given in Table DC below.    The overall 

accuracy of Kihara's expression seems to be somewhat better.    In view of 

this and of   their greater simplicity (fewer different collision integrals are 

required), Kihara's expressions for the second approximation to viscosity 

and thermal conductivity and the first approximation to the thermal diffusion 

r#tie would seem to be definitely preferable to Chapman and Cowling's 

corresponding expressions.    It is for this reason that we have avoided expressing 

our results for isotopic thermal diffusion in terms of the usual quantity   B.     , 

defined as the ratio of   k     to the first approximation to   k      for rigid spheres. 

Since the first approximations to   k      for rigid spheres according to Chapman and 

Cowling and to Kihara are different,    R      involves an uncertain numerical 

factor,  and the quantity   k„   defined in Eq.  (10) seems preferable from a 

theoretical standpoint. 
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Table DC.    Comparison of the approximations of Chapman and Cowling (CC) 

and of   Kihara (K)   to the reduced thermal diffusion ratio for 

isotopes,    k,^    . 

T* t^J i     • 1*51 z 
CC K CC 

ot  = 12 

0 0.3062 0.3104 0.3133 

0.5 -0.0828 -0.0819 -0.0829 

1 -0.0465 -0.0469 -0.0456 

2 0.1860 0.1903 0.1341 

10 0.4349 0.4455 0.4536 

20 0.4197 0.4291 0.4387 

100 0.3852 0.3942 0.4024 

a = is 

0 0.3062 0.3104 0.3133 

0.5 0.0217 0.0216 0.0229 

1 0.0505 0.0511 0.0498 

2 0.2668 0.2739 0.2665 

10 0.5189 0.5348 0.5446 

20 0.5204 0.5357 0.5479 

100 0.5253 0.5422 0.5534 
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APPENDIX II.    COMPARISON WITH AMDUR'S SEMI-CLASSICAL 

CALCULATION OF   S* ^ *(K) 

(37) Amdur has devised an approximate method for the calculation 

of gaseous transport properties -which is capahle of handling very complicated 

inter molecular potential functions with relatively little computation,  and has 

applied his method i.o the calculation of the transport properties of the rare 

gases at low temperatures.    The procedure,  however,   involves assumptions 

which require further justification*     ' ,   so that it is of interest to provide a 

test of the assumptions by comparing the results of   the present calculations 

with those obtained by applying Amdur's method to the same intermolecular 

potential. 

In the approximate procedure the transport cross   sections are not 

calculated directly, but instead the total classical collision cross section is 

first obtained,   and the transport cross sections are then assumed to be in the 

same ratio to the total collision cross section as in the case for rigid spheres. 

The total collision cross section is infinite if calculated by completely classical 

means,   so a semi-classical approximation is used,  in which only scattering 

through angles greater than a certain critical angle,    X      ,   is considered.    The 
c 

*37*   I. Amdur,  J. Chem- Phys. j_5,   482 (1947); 16,   190 (1948); 17,   100 
(1949). 

(38)   H.  S. W.  Massey andE.  H.  S. Burhop,  Electronic and Ionic Impact 
Phenomena (Oxford University Press,   London,  England,     1952),  pp.  381- 
382,   385. 
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total collision cross section,    S(K)    ,   is then given by 

S(K) =    IT  b*     , (46) 

where   b_   is that value of the collision parameter which,  for a given value of c 

'he energy   K ,  will produce a deflection equal to     X     •    The velocity 
c 

dependent cross sections for viscosity and diffusion are then taken to be two- 

thirds and one-half,   respectively,  of   S(K) ,   as for rigid spheres.    The collision 

integrals are obtained from the cross sections by essentially the same procedure 

as used in the present paper. 

Amdur's method was applied to the potential given in Eq.   (1) to 

calculate approximate values of the velocity dependent transport cross sections 

for comparison with the accurate values obtained in this paper by direct means. 

The critical scattering angle was taken to be*     ' 

A 
X   = 

2yK* (47) 

where   A   is the dimensionless group    h/ )_ r    (2 ju, £   ) J    »    h is Planck's 

constant,  and the other quantities are as previously defined.    Following Aradur, 

X      was represented by Eq,  (16) with the second term neglected; use of this 
c 

equation restricts the range of the results to   K > 1 .    The results are expressed 

in reduced form,    S*(K) = S(K) /( TT r* )    .    According to the approximation, 

S*(K) = S*     '(K)   for all values of   I    ; however for   K >   1 „ is is actually found 

*     '   H.  S.   W.  Massey and C.  B.  O.   Mohr,  Proc.  Roy Soc. (London) A141, 
434 (1933). 
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that   s'   '(K) is always larger than   S    '(K)    .-    by as much as 49 percent. 

In Fig,  *,    S*(K) is shown for    A     =0.05 and 2 ,   where the potential 

parameter    oL  = 12.    The small value of   A  corresponds to a heavy gas with 

strong inter molecular attraction;   such as xenon;   the large value to a light gas 

with weak attraction;   such as hydrogen     Also shown for comparison are 

S*   7K)   and   S      (K)   for   oc    = 12.    The results for other values of    or    are quite 

similar.    It is seen that although   S*(K)   does not change rapidly enough with 

K   ,   it may be nearly correct over a small range of   K        This fact would 

account for Amdur's numerical results on the rare gases (except helium), 

where he found fair agreement between calculated and experimental values of 

the viscosity, but the calculated temperature variation was too small.    The 

calculated values of the self-diffusion coefficients of neon and argon were, 

however,   rather too small*     "     ',   as might be expected since   S     (K)   is 

(2) realiy smaller than   Sv  '(K) The agreement for helium was some-what better, 

but this was perhaps due in part to the use of a   potential which is no longer 

(42) considered very accurate' 

The approximation scheme is thus seen to give results which are 

valid over a limited range,   and hence may still prove   useful because of its 

ability to handle very complicated potential functions. 

(40) 
E.  B.  Winn,  Phys    Rev.   80,   1024(1950) 

*41*   F.  Hutchinson,  J    Chem.  Phys,   U,   1081 (1949). 

*42)   Reference (36),  p.   378. 



W1S-ONR-1 
19 June  1953 

b4 

a a 
© 9 

O 6) 
0 k 

O   -H 
k 

•d o 
•>   -ri 
V    U 
i •> 
k  a 
«   >» 

J3 ,~ •«• 
v.   « 
© * 

a pi a 
0    O   • 
•H   r-J   .tj 
» a o 
a o • 
i g 
o .. O 
r-t a w 
a a) *» 
0 ft a) 

•H a 

* -£ « 
1 -H   k 

on 4 
k 

| •-• 

d  "H 

40 
40   •«•    S 
o   o £> 

a** 
O   TJr-4 
d -H  a 

MO* 
-t-i d o 

o, 0 .. 
j J4  a 
o *   • 

O A 
k -H 
* i-4 

• Vi 

- • 
ttfM  o 

•H _-  k 
f^   CO   .Q 

OOS 


	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0070
	0071



